• Journal of Inorganic Materials
  • Vol. 34, Issue 3, 236 (2019)
Xin LI, Li-Li XI, Jiong YANG, [in Chinese], [in Chinese], and [in Chinese]
Author Affiliations
  • Materials Genome Institute, Shanghai University, Shanghai 200444, China
  • show less
    DOI: 10.15541/jim20180321 Cite this Article
    Xin LI, Li-Li XI, Jiong YANG, [in Chinese], [in Chinese], [in Chinese]. First Principles High-throughput Research on Thermoelectric Materials: a Review[J]. Journal of Inorganic Materials, 2019, 34(3): 236 Copy Citation Text show less
    References

    [1] T J SEEBECK. On the magnetic polarization of metals and minerals by temperature differences. Annals of Physics, 82, 253-286(1826).

    [2] J C A PELTIER. New experiments on the heat effects of electric currents. Annals of Chemistry and Physics, 56, 371-386(1834).

    [3] Y TANG, J LIAO, Q ZHANG et al. Realizing a thermoelectric conversion efficiency of 12% in bismuth telluride/skutterudite segmented modules through full-parameter optimization and energy-loss minimized integration. Energy & Environmental Science, 10, 956-963(2017).

    [4] E BULMAN G, E SIIVOLA, B SHEN et al, 89, 122117-1-3(2006).

    [5] Y ZHANG, A SHAKOURI. On-chip solid-state cooling for integrated circuits using thin-film microrefrigerators. IEEE Transactions on Components and Packaging Technologies, 28, 65-69(2005).

    [6] Q HUANG, F JIA, W WANG et al. A new type of low power thermoelectric micro-generator fabricated by nanowire array thermoelectric material. Microelectronic Engineering, 77, 223-229(2005).

    [7] JING-FENG LI. Macrofabrication technology of three-dimensional microdevices and their MEMS applications. Journal of Inorganic Materials, 17, 657-664(2002).

    [8] G HAUTIE, H CHEN, A JAIN et al. Novel mixed polyanions lithium-ion battery cathode materials predicted by high-throughput ab initio computations. Journal of Materials Chemistry, 21, 17147-17153(2011).

    [9] W CHEN, M DE JONG, T ANGSTEN et al. Charting the complete elastic properties of inorganic crystalline compounds. Sci. Data, 2, 150009-1-13(2015).

    [10] S CURTAROLO, H TAYLOR R, G L W HART. Guiding the experimental discovery of magnesium alloys. Physical Review B, 84, 084101-1-17(2011).

    [11] V EHRLACHER, G HAUTIER, C FISCHER et al. Data mined ionic substitutions for the discovery of new compounds. Inorg. Chem., 50, 656-663(2011).

    [12] G HAUTIER, W CHEN, JAN-HENDRIK POHLS et al. Understanding thermoelectric properties from high-throughput calculations: trends, insights, and comparisons with experiment. Journal of Materials Chemistry C, 4, 4414-4426(2016).

    [13] O LEVY, C TOHER, J PLATA J et al. High-throughput computational screening of thermal conductivity, debye temperature,gruneisen parameter using a quasiharmonic debye model. Physical Review B, 90, 174107-1-14(2014).

    [14] M BLANCO, E FRANCISCO, V LUANA. Gibbs: isothermal-isobaric thermodynamics of solids from energy curves using a quasi-harmonic debye model. Computer Physics Communications, 158, 57-72(2004).

    [15] W SETYAWAN, S WANG, Z WANG et al. Assessing the thermoelectric properties of sintered compounds via high-throughput ab-initio calculations. Physical Review X, 1, 021012-1-8(2011).

    [16] W LI, J CARRETE, N MINGO et al. Finding unprecedentedly low-thermal-conductivity half-Heusler semiconductors via high-throughput materials modeling. Physical Review X, 4, 011019-1-9(2014).

    [17] H GOLDSMID, R DOUGLAS. The use of semiconductors in thermoelectric refrigeration. British Journal of Applied Physics, 5, 386-390(1954).

    [18] R CHASMAR, R STRATTON. The thermoelectric figure of merit and its relation to thermoelectric generators. International Journal of Electronics, 7, 52-72(1959).

    [19] A SLACK G. Nonmetallic crystals with high thermal conductivity. Journal of Physics & Chemistry of Solids, 34, 321-335(1973).

    [20] X LI, L XI, S PAN et al. Discovery of high performance thermoelectric chalcogenides through reliable high throughput material screening. Journal of the American Chemical Society, 140, 10785-10793(2018).

    [21] J YANG, L XI, W QIU et al. On the tuning of electrical and thermal transport in thermoelectrics: an integrated theory-experiment perspective. npj Computational Materials, 2, 15015-1-17(2016).

    [22] M GIBBS Z, G LI, F RICCI et al. Effective mass and Fermi surface complexity factor from ab initio band structure calculations. npj Computational Materials, 3, 8-1-7(2017).

    [23] LI-DONG CHEN, ZHEN XIONG, SHENG-QIANG BAI. Recent progress of thermoelectric nano-composites. Journal of Inorganic Materials, 25, 561-568(2010).

    [24] P GORAI, B ORTIZ, J YAN et al. Material descriptors for predicting thermoelectric performance. Energy & Environmental Science, 8, 983-994(2015).

    [25] L ANDERSON ORSON. A simplified method for calculating the debye temperature from elastic constants. Journal of Physics and Chemistry of Solids, 24, 909-917(1963).

    [26] RICHARD HILL. The elastic behaviour of a crystalline aggregate. Proceedings of the Physical Society. Section A, 65, 349-354(1952).

    [27] Y ZHANG, G CHEN, T JIA. Lattice thermal conductivity evaluated using elastic properties. Physical Review B, 95, 155206-1-6(2017).

    [28] R CLARKE D. Materials selection guidelines for low thermal conductivity thermal barrier coatings. Surface and Coatings Technology, 163, 67-74(2003).

    [29] G CAHILL D, R POHL. Lattice vibrations and heat transport in crystals and glasses. Annual Review of Physical Chemistry, 39, 93-121(1988).

    [30] V BRAUN P, G CAHILL D, G CHEN et al. Nanoscale thermal transport. II.2003-2012. Applied Physics Reviews, 1, 011305-1-45(2014).

    [31] J HAUKE, T KOSSOWSKI. Comparison of values of Pearson's and Spearman's correlation coefficients on the same sets of data. Quaestiones Geographicae, 30, 87-93(2011).

    [32] H LI, J YANG, T WU et al. Evaluation of half-Heusler compounds as thermoelectric materials based on the calculated electrical transport properties. Advanced Functional Materials, 18, 2880-2888(2008).

    [33] P YING, X LI, Y WANG et al. Hierarchical chemical bonds contributing to the intrinsically low thermal conductivity in α- MgAgSb thermoelectric materials. Advanced Functional Materials, 27, 1604145-1-8(2017).

    [34] S LIN, B GE, W LI et al. Low sound velocity contributing to the high thermoelectric performance of Ag8SnSe6. Advanced Science, 3, 1600196-1-7(2016).

    [35] W CHEN, F RICCI, U AYDEMIR et al. An ab initio electronic transport database for inorganic materials. Sci. Data, 4, 170085-1-13(2017).

    [36] G HAUTIER, U AYDEMIR, H ZHU et al. Computational and experimental investigation of TmAgTe2 and XYZ2 compounds, a new group of thermoelectric materials identified by first-principles high-throughput screening. Journal of Materials Chemistry C, 3, 10554-10565(2015).

    [37] U AYDEMIR, J P HLS, H ZHU et al. YCuTe2: a member of a new class of thermoelectric materials with cute4-based layered structure. Journal of Materials Chemistry A, 4, 2461-2472(2016).

    [38] C NAVONE, M SOULIER, C BERA et al. Thermoelectric properties of nanostructured Si1-xGex and potential for further improvement. Journal of Applied Physics, 108, 124306-1-8(2010).

    [39] M WAMBACH, A LUDWIG, P ZIOLKOWSKI et al. Application of high-throughput seebeck microprobe measurements on thermoelectric half-Heusler thin film combinatorial material libraries. ACS Combinatorial Science, 20, 1-18(2018).

    [40] J CARRETE, N MINGO, D WANG S et al. Nanograined half-heusler semiconductors as advanced thermoelectrics: an ab initio high-throughput statistical study. Advanced Functional Materials, 24, 7427-7432(2014).

    [41] A LIAW, M WIENER. Classification and regression by randomforest. R News, 23, 18-22(2002).

    [42] T JOLLIFFE I. Principal component analysis. Berlin, Heidelberg: Springer, 1094-1096(2011).

    [43] J FURTHMULLER, G KRESSE. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Physical Review B, 54, 11169-11186(1996).

    [44] P ONG S, A JAIN, S CHOLIA et al. The materials application programming interface (API): a simple, flexible and efficient API for materials data based on representational state transfer (rest) principles. Computational Materials Science, 97, 209-215(2015).

    [45] D RICHARDS W, A JAIN, P ONG S et al. Python materials genomics (pymatgen): a robust, open-source python library for materials analysis. Computational Materials Science, 68, 314-319(2013).

    [46] G HAUTIER, P ONG S, A JAIN et al. The materials project: a materials genome approach to accelerating materials innovation. APL Materials, 1, 011002-1-11(2013).

    [47] F ZHOU, A MARIANETTI C, M COCOCCIONI et al. First-principles prediction of redox potentials in transition-metal compounds with LDA + U. Physical Review B, 70, 235021-1-8(2004).

    [48] L WANG, G CEDER, T MAXISCH. A first-principles approach to studying the thermal stability of oxide cathode materials. Chemistry of Materials, 19, 543-552(2007).

    [49] P ONG S, A JAIN, G HAUTIER et al. Thermal stabilities of delithiated olivine MPO4 (M = Fe, Mn) cathodes investigated using first principles calculations. Electrochemistry Communications, 12, 427-430(2010).

    [50] S ADAMS, P RAO R. High power lithium ion battery materials by computational design. Physica Status Solidi a-Applications and. Materials Science, 208, 1746-1753(2011).

    [51] S BARONI, P GIANNOZZI, N BONINI et al. Quantum espresso: a modular and open-source software project for quantum simulations of materials. Journal of Physics-Condensed Matter, 21, 395502-1-19(2009).

    [52] C OSES, O ISAYEV, C TOHER et al. Universal fragment descriptors for predicting properties of inorganic crystals. Nat. Commun., 8, 15679-1-12(2017).

    [53] R SUPKA A, L LIYANAGE, E LYONS T et al. AFLOWπ: a minimalist approach to high-throughput ab initio calculations including the generation of tight-binding hamiltonians. Computational Materials Science, 136, 76-84(2017).

    Xin LI, Li-Li XI, Jiong YANG, [in Chinese], [in Chinese], [in Chinese]. First Principles High-throughput Research on Thermoelectric Materials: a Review[J]. Journal of Inorganic Materials, 2019, 34(3): 236
    Download Citation