• Chinese Journal of Lasers
  • Vol. 47, Issue 2, 207015 (2020)
Yang Shanshan, Yao Lin, Liu Kaiyuan, and Li Peng*
Author Affiliations
  • State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
  • show less
    DOI: 10.3788/CJL202047.0207015 Cite this Article Set citation alerts
    Yang Shanshan, Yao Lin, Liu Kaiyuan, Li Peng. Advances in Functional Optical Coherence Tomography and Neuroimaging of Stroke[J]. Chinese Journal of Lasers, 2020, 47(2): 207015 Copy Citation Text show less
    References

    [1] Huang D, Swanson E, Lin C et al. Optical coherence tomography[J]. Science, 254, 1178-1181(1991).

    [2] Fercher F, Drexler W, Hitzenberger C K et al. Optical coherence tomography-principles and applications[J]. Reports on Progress in Physics, 66, 239-303(2003).

    [3] Li P, Yang S S, Ding Z H et al. Research progress in Fourier domain optical coherence tomography[J]. Chinese Journal of Lasers, 45, 027011(2018).

    [4] Leitgeb R A, Drexler W, Unterhuber A et al. Ultrahigh resolution Fourier domain optical coherence tomography[J]. Optics Express, 12, 2156-2165(2004).

    [5] Yun S. Tearney G,de Boer J, et al. High-speed optical frequency-domain imaging[J]. Optics Express, 11, 2953-2963(2003).

    [6] Adler D C, Huber R, Fujimoto J G. Phase-sensitive optical coherence tomography at up to 370,000 lines per second using buffered Fourier domain mode-locked lasers[J]. Optics Letters, 32, 626-628(2007).

    [7] Zhao Y H, Chen Z P, Saxer C et al. Phase-resolved optical coherence tomography and optical Doppler tomography for imaging blood flow in human skin with fast scanning speed and high velocity sensitivity[J]. Optics Letters, 25, 114-116(2000).

    [8] de Boer J F, Hitzenberger C K, Yasuno Y. Polarization sensitive optical coherence tomography: a review[Invited][J]. Biomedical Optics Express, 8, 1838-1873(2017).

    [9] Faber D J, Aalders M C G et al. Quantitative measurement of attenuation coefficients of weakly scattering media using optical coherence tomography[J]. Optics Express, 12, 4353-4365(2004).

    [10] Wang R K, Jacques S L, Ma Z H et al. Three dimensional optical angiography[J]. Optics Express, 15, 4083-4097(2007).

    [11] Faber D J, Mik E G. Aalders M C G, et al. Toward assessment of blood oxygen saturation by spectroscopic optical coherence tomography[J]. Optics Letters, 30, 1015-1017(2005).

    [12] Meyer E P, Ulmann-Schuler A, Staufenbiel M et al. Altered morphology and 3D architecture of brain vasculature in a mouse model for Alzheimer's disease[J]. Proceedings of the National Academy of Sciences, 105, 3587-3592(2008).

    [13] Vakoc B J, Lanning R M, Tyrrell J A et al. Three-dimensional microscopy of the tumor microenvironment in vivo using optical frequency domain imaging[J]. Nature Medicine, 15, 1219-1223(2009).

    [14] Jain R K. Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy[J]. Science, 307, 58-62(2005).

    [15] Carmeliet P, Jain R K. Angiogenesis in cancer and other diseases[J]. Nature, 407, 249-257(2000).

    [16] Lü X Y, Ai M. Research advance in clinical application of optical coherence tomography angiography in macular diseases[J]. Recent Advances in Ophthalmology, 39, 94-97(2019).

    [17] Srinivasan V J, Mandeville E T, Can A et al. Multiparametric, longitudinal optical coherence tomography imaging reveals acute injury and chronic recovery in experimental ischemic stroke[J]. PLoS One, 8, e71478(2013).

    [18] Ding H J, Liu K Z, Yang S S et al. Real-time dynamic recording of cerebral cortical vascular embolization and regeneration in rats[J]. Acta Physiologica Sinica, 71, 581-587(2019).

    [19] Nishidate I, Mizushima C, Yoshida K et al. In vivo estimation of light scattering and absorption properties of rat brain using a single-reflectance fiber probe during cortical spreading depression[J]. Journal of Biomedical Optics, 20, 027003(2015).

    [20] Baran U, Li Y D, Wang R K. In vivo tissue injury mapping using optical coherence tomography based methods[J]. Applied Optics, 54, 6448-6453(2015).

    [21] Yang S S, Liu K Z, Ding H J et al. Longitudinal in vivo intrinsic optical imaging of cortical blood perfusion and tissue damage in focal photothrombosis stroke model[J]. Journal of Cerebral Blood Flow & Metabolism, 39, 1381-1393(2019).

    [22] Kut C, Chaichana K L, Xi J F et al. 7(292): 292ra100[J]. in vivo using quantitative optical coherence tomography. Science Translational Medicine(2015).

    [23] Xu C Y, Schmitt J M, Carlier S G et al. Characterization of atherosclerosis plaques by measuring both backscattering and attenuation coefficients in optical coherence tomography[J]. Journal of Biomedical Optics, 13, 034003(2008).

    [24] Yang Y, Wang T H, Biswal N C et al. Optical scattering coefficient estimated by optical coherence tomography correlates with collagen content in ovarian tissue[J]. Journal of Biomedical Optics, 16, 090504(2011).

    [25] Gong P J. McLaughlin R A, Liew Y M, et al. Assessment of human burn scars with optical coherence tomography by imaging the attenuation coefficient of tissue after vascular masking[J]. Journal of Biomedical Optics, 19, 021111(2014).

    [26] Es'Haghian S, Gong P J, Chin L et al. Investigation of optical attenuation imaging using optical coherence tomography for monitoring of scars undergoing fractional laser treatment[J]. Journal of Biophotonics, 10, 511-522(2017).

    [27] Fingler J, Schwartz D, Yang C et al. Mobility and transverse flow visualization using phase variance contrast with spectral domain optical coherence tomography[J]. Optics Express, 15, 12636-12653(2007).

    [28] Yu L F, Chen Z P. Doppler variance imaging for three-dimensional retina and choroid angiography[J]. Journal of Biomedical Optics, 15, 016029(2010).

    [29] Makita S, Hong Y, Yamanari M et al. Optical coherence angiography[J]. Optics Express, 14, 7821-7840(2006).

    [30] Mariampillai A, Standish B A, Moriyama E H et al. Speckle variance detection of microvasculature using swept-source optical coherence tomography[J]. Optics Letters, 33, 1530-1532(2008).

    [31] Jia Y L, Tan O, Tokayer J et al. Split-spectrum amplitude-decorrelation angiography with optical coherence tomography[J]. Optics Express, 20, 4710-4725(2012).

    [32] Enfield J, Jonathan E, Leahy M. In vivo imaging of the microcirculation of the volar forearm using correlation mapping optical coherence tomography (cmOCT)[J]. Biomedical Optics Express, 2, 1184-1193(2011).

    [33] Wang R K, An L, Francis P et al. Depth-resolved imaging of capillary networks in retina and choroid using ultrahigh sensitive optical microangiography[J]. Optics Letters, 35, 1467-1469(2010).

    [34] Barton J K, Stromski S. Flow measurement without phase information in optical coherence tomography images[J]. Optics Express, 13, 5234-5239(2005).

    [35] Guo L, Li P, Pan C et al. Improved motion contrast and processing efficiency in OCT angiography using complex-correlation algorithm[J]. Journal of Optics, 18, 025301(2016).

    [36] Cheng Y X, Guo L, Pan C et al. Statistical analysis of motion contrast in optical coherence tomography angiography[J]. Journal of Biomedical Optics, 20, 116004(2015).

    [37] Vakoc B J, Tearney G J, Bouma B E. Statistical properties of phase-decorrelation in phase-resolved Doppler optical coherence tomography[J]. IEEE Transactions on Medical Imaging, 28, 814-821(2009).

    [38] Li P, Cheng Y X, Li P et al. Hybrid averaging offers high-flow contrast by cost apportionment among imaging time, axial, and lateral resolution in optical coherence tomography angiography[J]. Optics Letters, 41, 3944-3947(2016).

    [39] Li P, Cheng Y X, Zhou L P et al. Single-shot angular compounded optical coherence tomography angiography by splitting full-space B-scan modulation spectrum for flow contrast enhancement[J]. Optics Letters, 41, 1058-1061(2016).

    [40] Makita S, Kurokawa K, Hong Y J et al. Noise-immune complex correlation for optical coherence angiography based on standard and Jones matrix optical coherence tomography[J]. Biomedical Optics Express, 7, 1525-1548(2016).

    [41] Braaf B, Donner S, Nam A S et al. Complex differential variance angiography with noise-bias correction for optical coherence tomography of the retina[J]. Biomedical Optics Express, 9, 486-506(2018).

    [42] Huang L Z, Fu Y M, Chen R X et al. SNR-adaptive OCT angiography enabled by statistical characterization of intensity and decorrelation with multi-variate time series model[J]. IEEE Transactions on Medical Imaging, 38, 2695-2704(2019).

    [43] Zhang A Q, Zhang Q Q, Chen C L et al. Methods and algorithms for optical coherence tomography-based angiography: a review and comparison[J]. Journal of Biomedical Optics, 20, 100901(2015).

    [44] Yousefi S, Liu T, Wang R K. Segmentation and quantification of blood vessels for OCT-based micro-angiograms using hybrid shape/intensity compounding[J]. Microvascular Research, 97, 37-46(2015).

    [45] Lee J, Jiang J Y, Wu W C et al. Statistical intensity variation analysis for rapid volumetric imaging of capillary network flux[J]. Biomedical Optics Express, 5, 1160-1172(2014).

    [46] Li P, Huang Z Y, Yang S S et al. Adaptive classifier allows enhanced flow contrast in OCT angiography using a histogram-based motion threshold and 3D Hessian analysis-based shape filtering[J]. Optics Letters, 42, 4816-4819(2017).

    [47] Vermeer K A, Mo J. Weda J J A, et al. Depth-resolved model-based reconstruction of attenuation coefficients in optical coherence tomography[J]. Biomedical Optics Express, 5, 322-337(2014).

    [48] Yang S S, Liu K Z, Yao L et al. Correlation of optical attenuation coefficient estimated using optical coherence tomography with changes in astrocytes and neurons in a chronic photothrombosis stroke model[J]. Biomedical Optics Express, 10, 6258-6271(2019).

    [49] Brott T, Bogousslavsky J. Treatment of acute ischemic stroke[J]. New England Journal of Medicine, 343, 710-722(2000).

    [50] Mukherjee D, Patil C G. Epidemiology and the global burden of stroke[J]. World Neurosurgery, 76, S85-S90(2011).

    [51] Wang X W, Li H L, Ding S. Pre-B-cell colony-enhancing factor protects against apoptotic neuronal death and mitochondrial damage in ischemia[J]. Scientific Reports, 6, 32416(2016).

    [52] Barone F C, Kilgore K S. Role of inflammation and cellular stress in brain injury and central nervous system diseases[J]. Clinical Neuroscience Research, 6, 329-356(2006).

    [53] Woodruff T M, Thundyil J, Tang S C et al. Pathophysiology, treatment, and animal and cellular models of human ischemic stroke[J]. Molecular Neurodegeneration, 6, 11(2011).

    Yang Shanshan, Yao Lin, Liu Kaiyuan, Li Peng. Advances in Functional Optical Coherence Tomography and Neuroimaging of Stroke[J]. Chinese Journal of Lasers, 2020, 47(2): 207015
    Download Citation