• Acta Optica Sinica
  • Vol. 41, Issue 12, 1219002 (2021)
Mengdie Zhang1、2, Wentao Wang1、2, Peng Sun2, Hui Huang1、2, Fengliang Dong2、3、***, Yuan Hu1、**, and Weiguo Chu2、3、*
Author Affiliations
  • 1School of Opto-Electronic Engineering, Changchun University of Science and Technology, Changchun, Jilin 130022, China
  • 2Nanofabrication Laboratory, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
  • 3Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
  • show less
    DOI: 10.3788/AOS202141.1219002 Cite this Article Set citation alerts
    Mengdie Zhang, Wentao Wang, Peng Sun, Hui Huang, Fengliang Dong, Yuan Hu, Weiguo Chu. A Highly Efficient Nonlinear Metasurface Based on Nanoring-Rod Structures[J]. Acta Optica Sinica, 2021, 41(12): 1219002 Copy Citation Text show less
    References

    [1] Yu N, Genevet P, Kats M A et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction[J]. Science, 334, 333-337(2011).

    [2] Kildishev A V, Boltasseva A, Shalaev V M et al. Planar photonics with metasurfaces[J]. Science, 339, 1232009(2013).

    [3] Yin X, Ye Z, Rho J et al. Photonic spin hall effect at metasurfaces[J]. Science, 339, 1405-1407(2013).

    [4] Chen W T, Yang K Y, Wang C M et al. High-efficiency broadband meta-hologram with polarization-controlled dual images[J]. Nano Letters, 14, 225-230(2014).

    [5] Lin D M, Fan P Y, Hasman E et al. Dielectric gradient metasurface optical elements[J]. Science, 345, 298-302(2014). http://europepmc.org/abstract/med/25035488

    [6] Arbabi A, Horie Y, Bagheri M et al. Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission[J]. Nature Nanotechnology, 10, 937-943(2015).

    [7] Wen D, Yue F, Li G et al. Helicity multiplexed broadband metasurface holograms[J]. Nature Communications, 6, 8241(2015). http://www.ncbi.nlm.nih.gov/pubmed/26354497

    [8] Dong F L, Chu W G. Multichannel-independent information encoding with optical metasurfaces[J]. Advanced Materials, 31, 1804921(2019). http://www.ncbi.nlm.nih.gov/pubmed/30556627

    [9] Wang Y, Zhang S H, Shen Y et al. Manipulation on amplitude of anomalous refraction in staggered terahertz V-shaped metasurface[J]. Acta Optica Sinica, 40, 0713001(2020).

    [10] Hasman E. Spin-optical metasurface route to spin-controlled photonics. [C]∥CLEO: QELS_Fundamental Science 2014, June 8-13, 2014, San Jose, California United States. Washington D.C.: OSA, FF1C, 1(2014).

    [11] Luo X G, Pu M B, Li X et al. Broadband spin hall effect of light in single nanoapertures[J]. Light, Science & Applications, 6, e16276(2017).

    [12] Khorasaninejad M, Chen W T, Devlin R C et al. Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging[J]. Science, 352, 1190-1194(2016). http://europepmc.org/abstract/med/27257251

    [13] Khorasaninejad M, Chen W T, Zhu A Y et al. Multispectral chiral imaging with a metalens[J]. Nano Letters, 16, 4595-4600(2016). http://www.ncbi.nlm.nih.gov/pubmed/27267137

    [14] Chen B H, Wu P C, Su V C et al. GaN metalens for pixel-level full-color routing at visible light[J]. Nano Letters, 17, 6345-6352(2017). http://www.ncbi.nlm.nih.gov/pubmed/28892632

    [15] Zheng G X, Wu W B, Li Z L et al. Dual field-of-view step-zoom metalens[J]. Optics Letters, 42, 1261-1264(2017). http://europepmc.org/abstract/MED/28362744

    [16] Wang B, Dong F, Li Q T et al. Visible-frequency dielectric metasurfaces for multiwavelength achromatic and highly dispersive holograms[J]. Nano Letters, 16, 5235-5240(2016). http://pubs.acs.org/doi/10.1021/acs.nanolett.6b02326

    [17] Chen J, Li T, Wang S M et al. Multiplexed holograms by surface plasmon propagation and polarized scattering[J]. Nano Letters, 17, 5051-5055(2017). http://www.ncbi.nlm.nih.gov/pubmed/28682622

    [18] Zang X, Dong F, Yue F et al. Polarization encoded color image embedded in a dielectric metasurface[J]. Advanced Materials, 30, e1707499(2018).

    [19] Dong F L, Feng H, Xu L H et al. Information encoding with optical dielectric metasurface via independent multichannels[J]. Acs Photonics, 6, 230-237(2019). http://arxiv.org/abs/1805.11246

    [20] Maguid E, Yulevich I, Veksler D et al. Photonic spin-controlled multifunctional shared-aperture antenna array[C]∥2016 IEEE Photonics Conference (IPC), October 2-6, 2016, Waikoloa, HI, USA., 200-201(2016).

    [21] Li Q T, Dong F L, Wang B et al. Free-space optical beam tapping with an all-silica metasurface[J]. ACS Photonics, 4, 2544-2549(2017). http://www.researchgate.net/publication/319485375_Free-Space_Optical_Beam_Tapping_with_an_All-Silica_Metasurface

    [22] Yue F Y, Wen D D, Zhang C M et al. Multichannel polarization-controllable superpositions of orbital angular momentum states[J]. Advanced Materials, 29, 1603838(2017). http://onlinelibrary.wiley.com/doi/pdf/10.1002/adma.201603838

    [23] Liu K T, Liu X, Ge Y H et al. Generation of orbital angular momentum vortex beams based on high-efficiency transmission metasurfaces[J]. Acta Optica Sinica, 39, 0126016(2019).

    [24] Chong K E, Staude I, James A et al. Polarization-independent silicon metadevices for efficient optical wavefront control[J]. Nano Letters, 15, 5369-5374(2015). http://www.ncbi.nlm.nih.gov/pubmed/26192100

    [25] Mehmood M Q, Mei S, Hussain S et al. Visible-frequency metasurface for structuring and spatially multiplexing optical vortices[J]. Advanced Materials, 28, 2533-2539(2016). http://europepmc.org/abstract/MED/26833667

    [26] Klein M W. Second-harmonic generation from magnetic metamaterials[J]. Science, 313, 502-504(2006). http://europepmc.org/abstract/MED/16873661

    [27] Kauranen M, Zayats A V. Nonlinear plasmonics[J]. Nature Photonics, 6, 737-748(2012).

    [28] Niesler F B P, Linden S, Förstner J et al. Collective effects in second-harmonic generation from split-ring-resonator arrays. [C]∥Quantum Electronics and Laser Science Conference 2012, May 6-11, 2012, San Jose, California United States. Washington D.C.: OSA, QTh3E, 2(2012).

    [29] Li G X, Chen S M, Pholchai N et al. Continuous control of the nonlinearity phase for harmonic generations[J]. Nature Materials, 14, 607-612(2015). http://europepmc.org/abstract/MED/25849530

    [30] Segal N, Zur S K, Hendler N et al. Controlling light with metamaterial-based nonlinear photonic crystals[J]. Nature Photonics, 9, 180-184(2015). http://www.nature.com/nphoton/journal/v9/n3/full/nphoton.2015.17.html

    [31] Nookala N, Lee J, Tymchenko M et al. Ultrathin gradient nonlinear metasurface with a giant nonlinear response[J]. Optica, 3, 283-288(2016). http://www.opticsinfobase.org/optica/abstract.cfm?uri=optica-3-3-283

    [32] Shorokhov A S. Gaykazyan E V M, Smirnova D A, et al. Multifold enhancement of third-harmonic generation in dielectric nanoparticles driven by magnetic fano resonances[J]. Nano Letters, 16, 4857-4861(2016).

    [33] David J B, Levy U. Nonlinear diffraction in asymmetric dielectric metasurfaces[J]. Nano Letters, 19, 1044-1051(2019).

    [34] Shcherbakov M R, Werner K, Fan Z Y et al. Photon acceleration and tunable broadband harmonics generation in nonlinear time-dependent metasurfaces[J]. Nature Communications, 10, 1345(2019). http://www.nature.com/articles/s41467-019-09313-8

    [35] Celebrano M, Wu X F, Baselli M et al. Mode matching in multiresonant plasmonic nanoantennas for enhanced second harmonic generation[J]. Nature Nanotechnology, 10, 412-417(2015). http://europepmc.org/abstract/MED/25895003

    [36] Czaplicki R, Zdanowicz M, Koskinen K et al. Dipole limit in second-harmonic generation from arrays of gold nanoparticles[J]. Optics Express, 19, 26866-26871(2011). http://www.ncbi.nlm.nih.gov/PubMed/22274269?dopt=Abstract

    [37] Thyagarajan K, Butet J. Martin O J F, et al. Augmenting second harmonic generation using Fano resonances in plasmonic systems[J]. Nano Letters, 13, 1847-1851(2013). http://www.ncbi.nlm.nih.gov/pubmed/23534924

    [38] Liu S D. Leong E S P, Li G C, et al. Polarization-independent multiple fano resonances in plasmonic nonamers for multimode-matching enhanced multiband second-harmonic generation[J]. Acs Nano, 10, 1442-1453(2016).

    [39] Aouani H, Rahmani M, Cía M N et al. Third-harmonic-upconversion enhancement from a single semiconductor nanoparticle coupled to a plasmonic antenna[J]. Nature Nanotechnology, 9, 290-294(2014). http://www.nature.com/articles/nnano.2014.27

    [40] Lehr D, Reinhold J, Thiele I et al. Enhancing second harmonic generation in gold nanoring resonators filled with lithium niobate[J]. Nano Letters, 15, 1025-1030(2015). http://www.ncbi.nlm.nih.gov/pubmed/25584636

    [41] Linnenbank H, Grynko Y, Förstner J et al. Second harmonic generation spectroscopy on hybrid plasmonic/dielectric nanoantennas[J]. Light, Science & Applications, 5, e16013(2016).

    [42] Li Z, Liu W W, Li Z C et al. Fano-resonance-based mode-matching hybrid metasurface for enhanced second-harmonic generation[J]. Optics Letters, 42, 3117-3120(2017). http://europepmc.org/abstract/MED/28809887

    [43] Kim K H, Rim W S. Strongly resonant metasurfaces supported by reflective substrates for highly efficient second- and high-harmonic generations with ultralow pump intensity[J]. Physical Chemistry Chemical Physics, 21, 19076-19082(2019). http://www.ncbi.nlm.nih.gov/pubmed/31432054

    [44] Liu S, Sinclair M B, Saravi S et al. Resonantly enhanced second-harmonic generation using III-V semiconductor all-dielectric metasurfaces[J]. Nano Letters, 16, 5426-5432(2016). http://www.ncbi.nlm.nih.gov/pubmed/27501472

    [45] Hao F. Sonnefraud Y, van Dorpe P, et al. Symmetry breaking in plasmonic nanocavities: subradiant LSPR sensing and a tunable fano resonance[J]. Nano Letters, 8, 3983-3988(2008).

    [46] Kim S W, Kim S, Park I Y et al. High harmonic generation by resonant plasmon field enhancement. [C]∥Conference on Lasers and Electro-Optics 2010, May 16-21, 2010, San Jose, California United States. Washington D.C.: OSA, CThQ1(2010).

    Mengdie Zhang, Wentao Wang, Peng Sun, Hui Huang, Fengliang Dong, Yuan Hu, Weiguo Chu. A Highly Efficient Nonlinear Metasurface Based on Nanoring-Rod Structures[J]. Acta Optica Sinica, 2021, 41(12): 1219002
    Download Citation