• Photonic Sensors
  • Vol. 12, Issue 4, 220417 (2022)
Onder KURC and Deniz TURKMEN*
Author Affiliations
  • Department of Chemistry, Hacettepe University, Ankara 06800, Turkey
  • show less
    DOI: 10.1007/s13320-022-0658-5 Cite this Article
    Onder KURC, Deniz TURKMEN. Molecularly Imprinted Polymers Based Surface Plasmon Resonance Sensor for Sulfamethoxazole Detection[J]. Photonic Sensors, 2022, 12(4): 220417 Copy Citation Text show less
    References

    [1] E. Y. Klein, T. P. van Boeckel, E. M. Martinez, S. Pant, S. Gandra, S. A. Levin, et al., “Global increase and geographic convergence in antibiotic consumption between 2000 and 2015,” Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(15): E3463-E3470.

    [2] G. Busch, B. Kassas, M. A. Palma, and A. Risius, “Perceptions of antibiotic use in livestock farming in Germany, Italy and the United States,” Livestock Science, 2020, 241: 104251.

    [3] X. Yin, N. M. M’ikanatha, E. Nyirabahizi, P. F. McDermott, and H. Tate, “Antimicrobial resistance in non-typhoidal salmonella from retail poultry meat by antibiotic usage-related production claims - United States, 2008-2017,” International Journal of Food Microbiology, 2021, 342: 109044.

    [4] E. U. Ahiwe, T. T. Tedeschi Dos Santos, H. Graham, and P. A. Iji, “Can probiotic or prebiotic yeast (Saccharomyces cerevisiae) serve as alternatives to in-feed antibiotics for healthy or disease-challenged broiler chickens?: a review,” Journal of Applied Poultry Research, 2021, 30(3): 100164.

    [5] L. C. Scott, M. J. Wilson, S. M. Esser, N. L. Lee, M. E. Wheeler, A. Aubee, et al., “Assessing visitor use impact on antibiotic resistant bacteria and antibiotic resistance genes in soil and water environments of Rocky Mountain National Park,” Science of The Total Environment, 2021, 785: 147122.

    [6] A. Serra-Compte, M. G. Pikkemaat, A. Elferink, D. Almeida, J. Diogène, J. A. Campillo, et al., “Combining an effect-based methodology with chemical analysis for antibiotics determination in wastewater and receiving freshwater and marine environment,” Environmental Pollution, 2021, 271: 116313.

    [7] Z. E. Menkem, B. L. Ngangom, S. S. A. Tamunjoh, and F. F. Boyom, “Antibiotic residues in food animals: public health concern,” Acta Ecologica Sinica, 2019, 39(5): 411-415.

    [8] L. M. Chiesa, L. DeCastelli, M. Nobile, F. Martucci, G. Mosconi, M. Fontana, et al., “Analysis of antibiotic residues in raw bovine milk and their impact toward food safety and on milk starter cultures in cheese-making process,” LWT, 2020, 131: 109783.

    [9] M. Bacanli and N. Basaran, “Importance of antibiotic residues in animal food,” Food and Chemical Toxicology, 2019, 125: 462-466.

    [10] H. Wu, Y. Ma, X. Peng, W. Qiu, L. Kong, B. Ren, et al., “Antibiotic-induced dysbiosis of the rat oral and gut microbiota and resistance to salmonella,” Archives of Oral Biology, 2020, 114: 104730.

    [11] A. Kim, N. Kim, H. J. Roh, W. K. Chun, D. T. Ho, Y. Lee, et al., “Administration of antibiotics can cause dysbiosis in fish gut,” Aquaculture, 2019, 512: 734330.

    [12] M. Li, Z. K. Lu, D. J. Amrol, J. R. Mann, J. W. Hardin, J. Yuan, et al., “Antibiotic exposure and the risk of food allergy: evidence in the US medicaid pediatric population,” The Journal of Allergy and Clinical Immunology: In Practice, 2019, 7(2): 492-499.

    [13] R. W. Steele, R. Warrier, P. J. Unkel, B. J. Foch, R. F. Howes, S. Shah, et al., “Colonization with antibiotic-resistant streptococcus pneumoniae in children with sickle cell disease,” The Journal of Pediatrics, 1996, 128(4): 531-535.

    [14] L. Papst, B. Beovic, C. Pulcini, E. Durante-Mangoni, J. Rodríguez-Bano, K. S. Kaye, et al., “Antibiotic treatment of infections caused by carbapenemresistant Gram-negative bacilli: an international ESCMID cross-sectional survey among infectious diseases specialists practicing in large hospitals,” Clinical Microbiology and Infection, 2018, 24(10): 1070-1076.

    [15] C. C. R. F. da Cunha, M. G. Freitas, D. A. da Silva Rodrigues, A. L. C. de Barros, M. C. Ribeiro, A. L. Sanson, et al., “Low-temperature partitioning extraction followed by liquid chromatography tandem mass spectrometry determination of multiclass antibiotics in solid and soluble wastewater fractions,” Journal of Chromatography A, 2021, 1650: 462256.

    [16] F. Tasci, H. S. Canbay, and M. Doganturk, “Determination of antibiotics and their metabolites in milk by liquid chromatography-tandem mass spectrometry method,” Food Control, 2021, 127: 108147.

    [17] E. Comini, “Metal oxides nanowires chemical/gas sensors: recent advances,” Materials Today Advances, 2020, 7: 100099.

    [18] M. Jalilzadeh, D. Cimen, E. OzgUr, C. Esen, and A. Denizli, “Design and preparation of imprinted surface plasmon resonance (SPR) nanosensor for detection of Zn(II) ions,” Journal of Macromolecular Science, Part A, 2019, 56(9): 877-886.

    [19] Z. Rasouli, M. Maeder, and H. Abdollahi, “Using chemical modeling for designing of optimal pH sensor based on analytical sensitivity enhancement,” Microchemical Journal, 2021, 168: 106450.

    [20] Y. Kojima, T. Kawashima, K. Noborio, K. Kamiya, and R. Horton, “A dual-probe heat pulse-based sensor that simultaneously determines soil thermal properties, soil water content and soil water matric potential,” Computers and Electronics in Agriculture, 2021, 188: 106331.

    [21] J. S. Kim, Y. So, S. Lee, C. Pang, W. Park, and S. Chun, “Uniform pressure responses for nanomaterials-based biological on-skin flexible pressure sensor array,” Carbon, 2021, 181: 169-176.

    [22] Q. D. Huang, C. H. Lv, X. L. Yuan, M. He, J. P. Lai, and H. Sun, “A novel fluorescent optical fiber sensor for highly selective detection of antibiotic ciprofloxacin based on replaceable molecularly imprinted nanoparticles composite hydrogel detector,” Sensors and Actuators B: Chemical, 2021, 328: 129000.

    [23] R. Xie, P. Yang, J. Liu, X. Zou, Y. Tan, X. Wang, et al., “Lanthanide-functionalized metal-organic frameworks based ratiometric fluorescent sensor array for identification and determination of antibiotics,” Talanta, 2021, 231: 122366.

    [24] B. Ondes, F. Akpinar, M. Uygun, M. Muti, and D. A. Uygun, “High stability potentiometric urea biosensor based on enzyme attached nanoparticles,” Microchemical Journal, 2021, 160: 105667.

    [25] Z. Zhang, O. Niwa, S. Shiba, S. Tokito, K. Nagamine, S. Ishikawa, et al., “Electrochemical enzyme biosensor for carnitine detection based on cathodic stripping voltammetry,” Sensors and Actuators B: Chemical, 2020, 321: 128473.

    [26] X. Zhao, X. Dai, S. Zhao, X. Cui, T. Gong, Z. Song, et al., “Aptamer-based fluorescent sensors for the detection of cancer biomarkers,” Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2021, 247: 119038.

    [27] X. Wang, X. Wang, Y. Liu, T. Chu, Y. Li, C. Dai, et al., “Surface plasma enhanced fluorescence combined aptamer sensor based on silica modified silver nanoparticles for signal amplification detection of cholic acid,” Microchemical Journal, 2021, 168: 106524.

    [28] A. Wang, X. You, H. Liu, J. Zhou, Y. Chen, C. Zhang, et al., “Development of a label free electrochemical sensor based on a sensitive monoclonal antibody for the detection of tiamulin,” Food Chemistry, 2022, 366: 130573.

    [29] H. Yang, Q. Zhang, X. Liu, Y. Yang, Y. Yang, M. Liu, et al., “Antibody-biotin-streptavidin-horseradish peroxidase (HRP) sensor for rapid and ultrasensitive detection of fumonisins,” Food Chemistry, 2020, 316: 126356.

    [30] E. OzgUr, Y. Saylan, N. Bereli, D. TUrkmen, and A. Denizli, “Molecularly imprinted polymer integrated plasmonic nanosensor for cocaine detection,” Journal of Biomaterials Science, Polymer Edition, 2020, 31(9): 1211-1222.

    [31] S. AkgOnUllU, C. Armutcu, and A. Denizli, “Molecularly imprinted polymer film based plasmonic sensors for detection of ochratoxin A in dried fig,” Polymer Bulletin, 2021, DOI: doi.org/10.1007/s00289-021-03699-6.

    [32] P. Teengam, N. Nisab, N. Chuaypen, P. Tangkijvanich, T. Vilaivan, and O. Chailapakul, “Fluorescent paper-based DNA sensor using pyrrolidinyl peptide nucleic acids for hepatitis C virus detection,” Biosensors and Bioelectronics, 2021, 189: 113381.

    [33] S. T. Rajendran, K. Huszno, G. Debowski, I. Sotres, T. Ruzgas, A. Boisen, et al., “Tissue-based biosensor for monitoring the antioxidant effect of orally administered drugs in the intestine,” Bioelectrochemistry, 2021, 138: 107720.

    [34] F. Guo and H. Liu, “Impact of heterotrophic denitrification on BOD detection of the nitrate-containing wastewater using microbial fuel cell-based biosensors,” Chemical Engineering Journal, 2020, 394: 125042.

    [35] S. Lí and G. A. Drago, “Bioconjugation and stabilisation of biomolecules in biosensors,” Essays in Biochemistry, 2016, 60(1): 59-68.

    [36] A. D. Mcconnell, V. Spasojevich, J. L. Macomber, I. P. Krapf, A. Chen, J. C. Sheffer, et al., “An integrated approach to extreme thermostabilization and affinity maturation of an antibody,” Protein Engineering, Design and Selection, 2013, 26(2): 151-164.

    [37] P. V. Iyer and L. Ananthanarayan, “Enzyme stability and stabilization-aqueous and non-aqueous environment,” Process Biochemistry, 2008, 43(10): 1019-1032.

    [38] S. AkgOnUllU, H. Yavuz, and A. Denizli, “SPR nanosensor based on molecularly imprinted polymer film with gold nanoparticles for sensitive detection of aflatoxin B1,” Talanta, 2020, 219: 121219.

    [39] S. AkgOnUllU, H. Yavuz, A. Denizli, M. García, and A. C. Grijalba, “Development of gold nanoparticles decorated molecularly imprinted-based plasmonic sensor for the detection of aflatoxin m1 in milk samples,” Chemosensors, 2021, 9(12): 363.

    [40] R. Ahmad, N. Griffete, A. Lamouri, N. Felidj, M. M. Chehimi, and C. Mangeney, “Nanocomposites of gold nanoparticles@molecularly imprinted polymers: chemistry, processing, and applications in sensors,” Chemistry of Materials, 2015, 27(16): 5464-5478.

    [41] S. Balbinot, A. M. Srivastav, J. Vidic, I. Abdulhalim, and M. Manzano, “Plasmonic biosensors for food control,” Trends in Food Science & Technology, 2021, 111: 128-140.

    [42] Q. Liu, H. Xie, J. Liu, J. Kong, and X. Zhang, “A novel electrochemical biosensor for lung cancer-related gene detection based on copper ferrite-enhanced photoinitiated chain-growth amplification,” Analytica Chimica Acta, 2021, 1179: 338843.

    [43] L. Hu, B. Gong, N. Jiang, Y. Li, and Y. Wu, “Electrochemical biosensor for cytokinins based on the CHASE domain of arabidopsis histidine kinases 4,” Bioelectrochemistry, 2021, 141: 107872.

    [44] W. Wu, J. Huang, L. Ding, H. Lin, S. Yu, F. Yuan, et al., “A real-time and highly sensitive fiber optic biosensor based on the carbon quantum dots for nitric oxide detection,” Journal of Photochemistry and Photobiology A: Chemistry, 2021, 405: 112963.

    [45] V. Yesudasu, H. S. Pradhan, and R. J. Pandya, “Recent progress in surface plasmon resonance based sensors: a comprehensive review,” Heliyon, 2021, 7(3): e06321.

    [46] J. Wollschlaeger and K. O. MOller, “Ocean in situ sensors: new developments in biological sensors,” Challenges and Innovations in Ocean In Situ Sensors: Measuring Inner Ocean Processes and Health in the Digital Age, 2019: 81-116.

    [47] L. Zhang, J. Liu, and E. Wang, “A new method for studying the interaction between chlorpromazine and phospholipid bilayer,” Biochemical and Biophysical Research Communications, 2008, 373(2): 202-205.

    [48] L. Quan, D. Wei, X. Jiang, Y. Liu, Z. Li, N. Li, et al., “Resurveying the tris buffer solution: The specific interaction between tris (hydroxymethyl) aminomethane and lysozyme,” Analytical Biochemistry, 2008, 378(2): 144-150.

    [49] S. Michaelis, J. Wegener, and R. Robelek, “Label-free monitoring of cell-based assays: combining impedance analysis with SPR for multiparametric cell profiling,” Biosensors and Bioelectronics, 2013, 49: 63-70.

    [50] A. Arif TopCu, E. Ozgur, F. Yilmaz, N. Bereli, and A. Denizli, “Real time monitoring and label free creatinine detection with artificial receptors,” Materials Science and Engineering: B, 2019, 244: 6-11.

    [51] Z. Mao, J. Zhao, J. Chen, X. Hu, K. Koh, and H. Chen, “A simple and direct SPR platform combining three-in-one multifunctional peptides for ultra-sensitive detection of PD-L1 exosomes,” Sensors and Actuators B: Chemical, 2021, 346: 130496.

    [52] G. Beketov, O. Shynkarenko, and M. Apatska, “Towards improving ELISA surfaces: SPR assessment of polystyrene modification efficiency for promoting immobilization of biomolecules,” Analytical Biochemistry, 2021, 618: 114101.

    [53] S. Wang, H. Yang, H. Zhang, F. Yang, M. Zhou, C. Jia, et al., “A surface plasmon resonance-based system to genotype human papillomavirus,” Cancer Genetics and Cytogenetics, 2010, 200(2): 100-105.

    [54] L. F. Sgobbi, C. A. Razzino, and S. A. S. Machado, “A disposable electrochemical sensor for simultaneous detection of sulfamethoxazole and trimethoprim antibiotics in urine based on multiwalled nanotubes decorated with prussian blue nanocubes modified screen-printed electrode,” Electrochimica Acta, 2016, 191: 1010-1017.

    [55] I. Cesarino, V. Cesarino, and M. R. V. Lanza, “Carbon nanotubes modified with antimony nanoparticles in a paraffin composite electrode: simultaneous determination of sulfamethoxazole and trimethoprim,” Sensors and Actuators B: Chemical, 2013, 188: 1293-1299.

    [56] Y. Zhao, F. Yuan, X. Quan, H. Yu, S. Chen, H. Zhao, et al., “An electrochemical sensor for selective determination of sulfamethoxazole in surface water using a molecularly imprinted polymer modified BDD electrode,” Analytical Methods, 2015, 7(6): 2693-2698.

    [57] L. del Torno-de Román, M. Asunción Alonso-Lomillo, O. Domínguez-Renedo, and M. J. Arcos-Martínez, “Tyrosinase based biosensor for the electrochemical determination of sulfamethoxazole,” Sensors and Actuators B: Chemical, 2016, 227: 48-53.

    [58] P. Balasubramanian, R. Settu, S. M. Chen, and T. W. Chen, “Voltammetric sensing of sulfamethoxazole using a glassy carbon electrode modified with a graphitic carbon nitride and zinc oxide nanocomposite,” Microchimica Acta, 2018, 185(8): 396-404.

    [59] M. Tumini, O. G. Nagel, and R. L. Althaus, “Five-assay microbiological system for the screening of antibiotic residues,” Revista Argentina de Microbiología, 2019, 51(4): 345-353.

    [60] T. H. Le, H. J. Lee, J. H. Kim, and S. J. Park, “Highly selective fluorescence sensor based on graphene quantum dots for sulfamethoxazole determination,” Materials, 2020, 13(11): 2521.

    [61] A. Pathak, S. Parveen, and B. D. Gupta, “Fibre optic SPR sensor using functionalized CNTs for the detection of SMX: comparison with enzymatic approach,” Plasmonics, 2018,13(1): 189-202.

    Onder KURC, Deniz TURKMEN. Molecularly Imprinted Polymers Based Surface Plasmon Resonance Sensor for Sulfamethoxazole Detection[J]. Photonic Sensors, 2022, 12(4): 220417
    Download Citation