• Acta Optica Sinica
  • Vol. 41, Issue 7, 0728002 (2021)
Siqi Yu1、2、3, Dong Liu2、3、*, Jiwei Xu2、3、4, Zhenzhu Wang2、3, Decheng Wu2、3, Liyong Qian2、3、4, Minjuan Mao5, and Yingjian Wang1、2、3
Author Affiliations
  • 1School of Environmental Science and Optoelectronic Technology, University of Science and Technology of China, Hefei, Anhui 230026, China
  • 2Key Laboratory of Atmospheric Optics, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei, Anhui 230031, China
  • 3Advanced Laser Technology Laboratory of Anhui Province, Hefei, Anhui 230037, China
  • 4Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, Anhui 230026, China
  • 5Zhejiang Meteorology Science Institute, Hangzhou, Zhejiang 310008, China
  • show less
    DOI: 10.3788/AOS202141.0728002 Cite this Article Set citation alerts
    Siqi Yu, Dong Liu, Jiwei Xu, Zhenzhu Wang, Decheng Wu, Liyong Qian, Minjuan Mao, Yingjian Wang. Optimization Method for Planetary Boundary Layer Height Retrieval by Lidar[J]. Acta Optica Sinica, 2021, 41(7): 0728002 Copy Citation Text show less
    References

    [1] Sheng P X, Mao J T, Li J G[M]. Atmospheric physics, 239-240(2013).

    [2] Emeis S, Schäfer K, Münkel C. Surface-based remote sensing of the mixing-layer height a review[J]. Meteorologische Zeitschrift, 17, 621-630(2008).

    [3] Mao M J, Jiang W M, Gu J Q et al. Study on the mixed layer, entrainment zone, and cloud feedback based on lidar exploration of Nanjing City[J]. Geophysical Research Letters, 36, L04808(2009).

    [4] Stull R B. An introduction to boundary layer meteorology[M]. Dordrecht: Springer Netherlands, 545-585(1988).

    [5] Zhuang Q F, Wang Y M, Wang Z J et al. Typical case of multi-wavelength aerosol lidar observation of persistent hazy weather in Beijing[J]. Laser & Optoelectronics Progress, 56, 240101(2019).

    [6] Xu J J, Bu L B, Liu J Q et al. Airborne high-spectral-resolution lidar for atmospheric aerosol detection[J]. Chinese Journal of Lasers, 47, 0710003(2020).

    [7] Fang X, Wang M, Hu S X. Distribution characteristics of atmospheric pollutions in Meiyu season observed by lidar over Hefei[J]. Chinese Journal of Lasers, 46, 0110003(2019).

    [8] Liu S Y, Liang X Z. Observed diurnal cycle climatology of planetary boundary layer height[J]. Journal of Climate, 23, 5790-5809(2010). http://www.cabdirect.org/abstracts/20103379140.html

    [9] Yan B D, Song X Q, Chen C et al. Beijing atmospheric boundary layer observation with lidar in 2011 spring[J]. Acta Optica Sinica, 33, s128001(2013).

    [10] Zhang W, Wu S H, Song X Q et al. Atmospheric boundary layer detected by a Fraunhofer lidar over Qingdao suburb[J]. Acta Optica Sinica, 33, 0628002(2013).

    [11] Wang D X, Song X Q, Feng C Z et al. Coherent Doppler lidar observations of marine atmospheric boundary layer height in the Bohai and Yellow Sea[J]. Acta Optica Sinica, 35, s101001(2015).

    [12] Xiang Y, Zhang T S, Liu J G et al. Evaluation of boundary layer height simulated by WRF mode based on lidar[J]. Chinese Journal of Lasers, 46, 0110002(2019).

    [13] Endlich R M, Ludwig F L, Uthe E E. An automatic method for determining the mixing depth from lidar observations[J]. Atmospheric Environment, 13, 1051-1056(1979).

    [14] Wang Z Z, Li J, Zhong Z Q et al. LIDAR exploration of atmospheric boundary layer over downtown of Beijing in summer[J]. Journal of Applied Optics, 29, 96-100(2008).

    [15] Brooks I M. Finding boundary layer top: application of a wavelet covariance transform to lidar backscatter profiles[J]. Journal of Atmospheric and Oceanic Technology, 20, 1092-1105(2003).

    [16] Lewis J R, Welton E J, Molod A et al. Improved boundary layer depth retrievals from MPLNET[J]. Journal of Geophysical Research: Atmospheres, 118, 9870-9879(2013).

    [17] Melfi S H, Spinhirne J D, Chou S H et al. Lidar observations of vertically organized convection in the planetary boundary layer over the ocean[J]. Journal of Climate and Applied Meteorology, 24, 806-821(1985).

    [18] Campbell J R, Sassen K, Welton E J. Elevated cloud and aerosol layer retrievals from micropulse lidar signal profiles[J]. Journal of Atmospheric and Oceanic Technology, 25, 685-700(2008).

    [19] Bravoaranda J A. Moreira G D A, Navasguzman F, et al. A new methodology for PBL height estimations based on lidar depolarization measurements: analysis and comparison against MWR and WRF model-based results[J]. Atmospheric Chemistry and Physics, 17, 6839-6851(2017).

    [20] Teng J Y, Qin K, Wang Y J et al. Study on automatic identification of aerosols boundary layer height with local optimum model based on lidar data[J]. Spectroscopy and Spectral Analysis, 37, 361-367(2017).

    [21] Mao F Y, Gong W, Song S L et al. Determination of the boundary layer top from lidar backscatter profiles using a Haar wavelet method over Wuhan, China[J]. Optics & Laser Technology, 49, 343-349(2013).

    [22] Yu S Q, Liu D, Xu J W et al. Aerosol multi-layer vertical distribution detected by lidar[J]. Equipment Environmental Engineering, 16, 30-34(2019).

    [23] Wang Z Z, Liu D, Wang Y J et al. Development of dual-wavelength Mie polarization Raman lidar for aerosol and cloud vertical structure probing[J]. Proceedings of SPIE, 9299, 929916(2014).

    [24] Xiang C L, Wang Y J, Zhou H Z et al. Development of the anthropogenic air pollutants emission inventory in Jinhua[J]. Environmental Science & Technology, 40, 229-237(2017).

    [25] Zhang W C, Augustin M, Zhang Y et al. Spatial and temporal variability of aerosol vertical distribution based on lidar observations: a haze case study over Jinhua basin[J]. Advances in Meteorology, 2015, 447-466(2015).

    Siqi Yu, Dong Liu, Jiwei Xu, Zhenzhu Wang, Decheng Wu, Liyong Qian, Minjuan Mao, Yingjian Wang. Optimization Method for Planetary Boundary Layer Height Retrieval by Lidar[J]. Acta Optica Sinica, 2021, 41(7): 0728002
    Download Citation