• Photonic Sensors
  • Vol. 2, Issue 3, 247 (2012)
Paul JANSZ*, Steven RICHARDSON, Graham WILD, and Steven HINCKLEY
Author Affiliations
  • School of Engineering, Edith Cowan University, 270 Joondalup Drive, Joondalup WA 6027, Australia
  • show less
    DOI: 10.1007/s13320-012-0069-0 Cite this Article
    Paul JANSZ, Steven RICHARDSON, Graham WILD, Steven HINCKLEY. Modeling of Low Coherence Interferometry Using Broadband Multi-Gaussian Light Sources[J]. Photonic Sensors, 2012, 2(3): 247 Copy Citation Text show less
    References

    [1] A. F. Fercher, “Optical coherence tomography,” Journal of Biomedical Optics, vol. 1, no. 2, pp. 157-173, 1996.

    [2] J. A. Izatt, M. D. Kulkarni, K. Kobayashi, M. V. Sivak, J. K. Barton, and A. J. Welch, “Optical coherence tomography for biodiagnostics,” Optics and Photonics News, vol. 8, no. 5, pp. 41-47, 1997.

    [3] W. Drexler, Y. Chen, A. Aguirre, B. Povazay, A. Unterhuber, and J. G. Fujimoto, “Ultrahigh resolution optical coherence tomography,” in Optical Coherence Tomography: Technology and Applications, W. Drexler and J.G. Fugimoto, Eds. Berlin: Springer-Verlag, 2008, pp. 241.

    [4] P. V. Jansz, G. Wild, S. Richardson, and S. Hinckley, “Simulation of optical delay lines for optical coherence tomography,” in Proc. IQEC-CLEO Pacific Rim, Sydney, Aug. 28, pp. 1400-1402, 2011.

    [5] P. V. Jansz, G. Wild, and S. Hinckley, “A micro-photonic stationary optical delay line for fiber optic TD OCT,” in Proc. OECC ACOFT, Jul. 7-10, pp. 1-2, 2008.

    [6] M. Friebel, J. Helfmann, U. Netz, and M. Meinke, “Influence of oxygen saturation on the optical scattering properties of human red blood cells in the spectral range 250 to 2000 nm,” Journal of Biomedical Optics, vol. 14, no. 3, pp. 034001-1-034001-6, 2009.

    [7] V. R. Shidlovski, Superluminescent diode light sources for OCT, In Optical Coherence Tomogrpahy: Technology and Applications, W. Drexler and J. G. Fugimoto, Eds. Berlin,: Springer-Verlag, 2008, pp. 281-299.

    [8] S. G. Adie, “Enhancement of contrast in optical coherence tomography: new modes, methods and technologies,” Ph.D. dissertation, School of Electrical Engineering, The University of Western Australia, Perth, Australia, 2007.

    [9] A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography - principles and applications,” Report on Progress in Physics, vol. 66, no. 2, pp. 239-303, 2003.

    [10] A. V. Zvyagin, M. G. Garcia-Webb, and D. D. Sampson, “Semiconductor line source for low-coherence interferometry,” Applied Optics, vol. 40, no. 6, pp. 913-915, 2001.

    [11] J. R. Parker, “Optical coherence tomography: endoscopic instrumentation and applications,” 2003. Retrieved November 23, 2005, from the Imperial College website: http://www.imperial.ac.uk/research/photonics/about/staff/james_parker_octrepo rt.pdf.

    [12] S. C. Moore, “A theoretical framework for new approaches to scanning and acquisition in optical coherence tomography,” Ph.D. dissertation, School of Electrical Engineering, The University of Western Australia, Perth, Australia, 2003.

    [13] X. Clivaz, F. Marquis-Weible, R. P. Salathé, R. P. Novàk, and H. H. Gilgen, “High-resolution reflectometry in biological tissues,” Optics Letters, vol. 17, no. 1, pp. 4-6, 1992.

    [14] J. M. Schmitt, S. L. Lee, and K. M. Yung, “An optical coherence microscope with enhanced resolving power in thick tissue,” Optics Communications, vol. 142, no. 4-6, pp. 203-207, 1997.

    [15] W. K. Burns, C. Chen, and R. P. Moeller, “Fiber-optic gyroscopes with broadband sources,” Journal of Lightwave Technology, vol. 1, no. 1, pp. 98-105, 1983.

    [16] M. Rossetti, A. Markus, A. Fiore, L. Occhi, and C. Velez, “Quantum dot superluminescent diodes emitting at 1.3 m,” IEEE Photonics Technology Letters, vol. 17, no. 3, pp. 540-542, 2005.

    [17] D. D. Sampson and W. T. Holloway, “100 mW spectrally-uniform broad band ASE for spectrum-sliced WDM systems,” Electronics Letters, vol. 30, no. 19, pp. 1611-1612, 1994.

    [18] J. Singh, Semiconductor Devices: An Introduction. New York, USA: McGraw-Hill Inc, 1994, pp. 90.

    [19] E. V. Andreeva, P. I. Lapin, V. V. Prokhorov, V. R. Shidlovski, M. V. Shramenko, and S. D. Yakubovich, “Novel superluminescent diodes and SLD-based light sources for optical coherence tomography,” in Proc. SPIE, vol. 6627, pp. 662703-1-662703-10, 2007.

    [20] J. Wang, M. J. Hamp, and D. T. Cassidy, “Design considerations for asymmetric multiple quantum well broad spectral width superluminescent diodes,” IEEE Journal of Quantum Electronics, vol. 44, no. 12, pp. 1256-1262, 2008.

    [21] L. H. Li, M. Rossetti, A. Fiore, L. Occhi, and C. Velez, “Wide emission spectrum from superluminescent diodes with chirped quantum dot multilayers,” Electronics Letters, vol. 41, no. 1, pp. 41-43, 2005.

    [22] P. Bardella, M. Rossetti, and I. Montrosset, “Modelling of broadband chirped quantum-dot super-luminescent diodes,” IEEE Journal of Selected Topics in Quantum Electronics, vol. 15, no. 3, pp. 785-791, 2009.

    [23] P. D. L. Judson, K. M. Groom, D. T. D. Childs, M. Hopkinson, N. Krstajic, and R. A. Hogg, “Maximising performance of optical coherence tomography systems using a multi-section chirped quantum dot sup er luminescent diode , ” Microelectronics Journal, vol. 40, no. 3, pp. 588-591, 2009.

    [24] S. K. Ray, K. M. Groom, H. Y. Liu, M. Hopkinson, and R. A. Hogg, “Broad-band superluminescent light emitting diodes incorporating quantum dots in compositionally modulated quantum wells,” Japanese Journal of Applied Physics, vol. 45. no. 4A, pp. 2542-2545, 2006.

    [25] S. K. Ray, T. L. Choi, K. M. Groom, B. J. Stevens, H. Liu, M. Hopkinson, et al., “High-power and broadband quantum dot superluminescent diodes centered at 1250 nm for optical coherence tomography,” IEEE Journal of Selected Topics in Quantum Electronics, vol. 13, no. 5, pp. 1267-1272, 2007.

    [26] A. Somers, W. Kaiser, J. P. Reithmaier, and A. Forchel, “Optical gain properties of InAs/InAlGaAs/InP quantum dash structures with a spectral gain bandwidth of more than 300 nm,” Applied Physics Letters, vol. 89, pp. 061107-1-061107-3, 2006.

    [27] B. S. Ooi, H. S. Djie, Y. Wang, C. Tan, J. C. M. Hwang, X. Fang, et al., “Quantum dashes on InP substrate for broadband emitter applications,” IEEE Journal of Selected Topics in Quantum Electronics, vol. 14, no. 4, pp. 1230-1238, 2008.

    [28] A. Baumgartner, C. K. Hitzenberger, E. Ergun, M. Stur, H. Sattmann, W. Drexler, et al., “Resolution-improved dual-beam and standard optical coherence tomography: a comparison,” Graefe’s Archive Clinical Experimental Ophthalmology, vol. 238, no. 5, pp. 385-392, 2000.

    [29] H. Wang, M. W. Jenkins, and A. M. Rollins, “A combined multiple-SLED broadband light source at 1300 nm for high resolution optical coherence tomography,” Optics Communications, vol. 281, no. 7, pp. 1896-1900, 2008.

    [30] S. Lee, H. Jeong, and B. Kim, “High-speed spectral domain polarization-sensitive optical coherence tomography using a single camera and an optical switch at 1.3 μm,” Journal of Biomedical Optics, vol. 15, no. 1, pp. 010501-1-010501-3, 2010.

    [31] M. J. C. Van Gemert, S. L. Jacques, H. J. C. M. Sterenborg, and W. M. Star, “Skin optics,” IEEE Transaction on Biomedical Engineering, vol. 36, no. 12, pp. 1146-1154, 1989.

    Paul JANSZ, Steven RICHARDSON, Graham WILD, Steven HINCKLEY. Modeling of Low Coherence Interferometry Using Broadband Multi-Gaussian Light Sources[J]. Photonic Sensors, 2012, 2(3): 247
    Download Citation