• Microelectronics
  • Vol. 51, Issue 4, 527 (2021)
ZHANG Guanghua, ZHANG Changchun, ZHAO Wenbin, DONG Shulu, and YUAN Feng
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.13911/j.cnki.1004-3365.200468 Cite this Article
    ZHANG Guanghua, ZHANG Changchun, ZHAO Wenbin, DONG Shulu, YUAN Feng. An Adaptive Charge Pump-Based Multi-Source Energy Harvesting Chip[J]. Microelectronics, 2021, 51(4): 527 Copy Citation Text show less
    References

    [1] KWONG J, CHANDRAKASAN A P. An energy-efficient biomedical signal processing platform [J]. IEEE J Sol Sta Circ, 2011, 46(7): 1742-1753.

    [2] CHEN G, FOJTIK M, KIM D, et al. Millimeter-scale nearly perpetual sensor system with stacked battery and solar cells [C] // IEEE ISSCC. San Francisco, CA, USA. 2010: 288-289.

    [4] TORFS T, LEONOV V, YAZICIOGLU R F, et al. Wearable autonomous wireless electroencephalography system fully powered by human body heat [C] // IEEE Sensors. Lecce, Italy. 2008: 1269-1272.

    [5] CARLSON E J, STRUNZ K, OTIS B P. A 20 mV input boost converter with efficient digital control for thermoelectric energy harvesting [J]. IEEE J Sol Sta Circ, 2010, 45(4): 741-750.

    [6] KONG N, HA D S. Low-power design of a self-powered piezoelectric energy harvesting system with maximum power point tracking [J]. IEEE Trans Power Elec, 2012, 27(5): 2298-2308.

    [7] CARREON-BAUTISTA S, HUANG L, SANCHEZ- SINENCIO E. An autonomous energy harvesting power management unit with digital regulation for IoT applications [J]. IEEE J Sol Sta Circ, 2016, 51(6): 1457-1474.

    [8] LI J, SEO J S, KYMISSIS I, et al. Triple-mode, hybrid-storage, energy harvesting power management unit: achieving high efficiency against harvesting and load power variabilities [J]. IEEE J Sol Sta Circ, 2017, 52(10): 2550-2562.

    [9] ELHEBEARY M R, IBRAHIM M A A, ABOUDINA M M, et al. Dual-source self-start high-efficiency microscale smart energy harvesting system for IoT [J]. IEEE Trans Indust Elec, 2018, 65(1): 342-351.

    [10] DU S, SESHIA A A. An inductorless bias-flip rectifier for piezoelectric energy harvesting [J]. IEEE J Sol Sta Circ, 2017, 52(10): 2746-2757.

    [11] YING T R, KI W H, CHAN M. Area-efficient CMOS charge pumps for LCD drivers [J]. IEEE J Sol Sta Circ, 2003, 38(10): 1721-1725.

    [12] SEEMAN M D, SANDERS S R. Analysis and optimization of switched-capacitor DC-DC converters [J]. IEEE Trans Power Elec, 2008, 23(2): 841-851.

    [13] CHOWDARY G, SINGH A, CHATTERJEE S. An 18 nA, 87% efficient solar, vibration and RF energy-harvesting power management system with a single shared inductor [J]. IEEE J Sol Sta Circ, 2016, 51(10): 2501-2513.

    [14] CHEN P H, CHENG H C, LO C L. A single-inductor triple-source quad-mode energy-harvesting interface with automatic source selection and reversely polarized energy recycling [J]. IEEE J Sol Sta Circ, 2019, 54(10): 2671-2679.

    [15] JUNG J, JUNG Y, HONG S, et al. A high peak output power and high power conversion efficiency SIMIMO converter using optimal on-time control and hybrid zero current switching for energy harvesting systems in IoT applications [J]. IEEE Trans Power Elec, 2020, 35(8): 8261-8275.

    [16] CHAMANIAN S, CIFTCI B, ULUSAN H, et al. Power-efficient hybrid energy harvesting system for harnessing ambient vibrations [J]. IEEE Trans Circ & Syst I: Regu Pap, 2019, 66(7): 2784-2793.

    ZHANG Guanghua, ZHANG Changchun, ZHAO Wenbin, DONG Shulu, YUAN Feng. An Adaptive Charge Pump-Based Multi-Source Energy Harvesting Chip[J]. Microelectronics, 2021, 51(4): 527
    Download Citation