• Journal of Innovative Optical Health Sciences
  • Vol. 14, Issue 3, 2150009 (2021)
Xiaofu Weng1, Zhouzhou Bao2、3、*, and Xunbin Wei1
Author Affiliations
  • 1School of Biomedical Engineering Shanghai Jiao Tong University Shanghai 200030, P. R. China
  • 2Department of Obstetrics and Gynecology Ren Ji Hospital, School of Medicine Shanghai Jiao Tong University Shanghai 200127, P. R. China
  • 3Shanghai Key Laboratory of Gynecologic Oncology Ren Ji Hospital, School of Medicine Shanghai Jiao Tong University Shanghai 200127, P. R. China
  • show less
    DOI: 10.1142/s1793545821500097 Cite this Article
    Xiaofu Weng, Zhouzhou Bao, Xunbin Wei. Binary organic nanoparticles with enhanced reactive oxygen species generation capability for photodynamic therapy[J]. Journal of Innovative Optical Health Sciences, 2021, 14(3): 2150009 Copy Citation Text show less
    References

    [1] Y. Sun, F. Ding, Z. Chen, R. Zhang, C. Li, Y. Xu, Y. Zhang, R. Ni, X. Li, G. Yang, Y. Sun, P. J. Stang, "Melanin-dot-mediated delivery of metallacycle for NIR-II/photoacoustic dual-modal imaging-guided chemo-photothermal synergistic therapy," Proc. Natl. Acad. Sci. USA 116, 16729–16735 (2019).

    [2] Y. Xu, Y. Zhang, J. Li, J. An, C. Li, S. Bai, A. Sharma, G. Deng, J. S. Kim, Y. Sun, "NIR-II emissive multifunctional AIEgen with single laseractivated synergistic photodynamic/photothermal therapy of cancers and pathogens," Biomaterials 259, 120315 (2020).

    [3] J. Li, Y. Liu, Y. Xu, L. Li, Y. Sun, W. Huang, "Recent advances in the development of NIR-II organic emitters for biomedicine," Coord. Chem. Rev. 415, 213318 (2020).

    [4] L. Tu, Y. Xu, Q. Ouyang, X. Li, Y. Sun, "Recent advances on small-molecule fluorophores with emission beyond 1000 nm for better molecular imaging in vivo," Chin. Chem. Lett. 30, 1731–1737 (2019).

    [5] A. Abdurashitov, V. Tuchin and O. Semyachkina- Glushkovskaya, "Photodynamic therapy of brain tumors and novel optical coherence tomography strategies for in vivo monitoring of cerebral fluid dynamics," J. Innov. Opt. Health Sci. 13, 2030004 (2020).

    [6] S. Huang, C. I. Fong, M. Xu, B.-N. Han, Z. Yuan, Q. Zhao, "Nano-loaded natural killer cells as carriers of indocyanine green for synergetic cancer immunotherapy and phototherapy," J. Innov. Opt. Health Sci. 12, 1941002 (2019).

    [7] D. W. Felsher, "Photodynamic therapy for cancer," Nat. Rev. Cancer 3, 375–80 (2003).

    [8] Z. Huang, H. P. Xu, A. D. Meyers, A. I. Musani, L. W. Wang, R. Tagg, A. B. Barqawi, Y. K. Chen, "Photodynamic therapy for treatment of solid tumors — Potential and technical challenges," Technol. Cancer Res. Treat. 7, 309–320 (2008).

    [9] M. H. Lan, S. J. Zhao, W. M. Liu, C. S. Lee, W. J. Zhang, P. F. Wang, "Photosensitizers for photodynamic therapy," Adv. Healthc. Mater. 8, 1900132 (2019).

    [10] D. Chen, M. Song, J. Huang, N. Chen, J. Xue and M. Huang, "Photocyanine: A novel and effective phthalocyanine-based photosensitizer for cancer treatment," J. Innov. Opt. Health Sci. 13, 2030009 (2020).

    [11] J. Li, W. Sun, Z. Yang, G. Gao, H.-H. Ran, K.-F. Xu, Q.-Y. Duan, X. Liu, F.-G. Wu, "Rational design of self-assembled cationic porphyrin-based nanoparticles for efficient photodynamic inactivation of bacteria," ACS Appl. Mater. Interfaces 12, 54378– 54386 (2020).

    [12] A. Sulek, B. Pucelik, M. Kobielusz, A. Barzowska, J. M. Dabrowski, "Photodynamic inactivation of bacteria with porphyrin derivatives: Effect of charge, lipophilicity, ROS generation, and cellular uptake on their biological activity in vitro," Int. J. Mol. Sci. 21, 8716 (2020).

    [13] J. Tian, B. X. Huang, M. H. Nawaz, W. A. Zhang, "Recent advances of multi-dimensional porphyrinbased functional materials in photodynamic therapy," Coord. Chem. Rev. 420, 213410 (2020).

    [14] G. X. Feng, B. Liu, "Aggregation-induced emission (AIE) dots: Emerging theranostic nanolights," Acc. Chem. Res. 51, 1404–1414 (2018).

    [15] H. Qian, M. E. Cousins, E. H. Horak, A. Wakefield, M. D. Liptak, I. Aprahamian, "Suppression of Kasha's rule as a mechanism for fluorescent molecular rotors and aggregation-induced emission," Nat. Chem. 9, 83–87 (2017).

    [16] Y. Hong, J. W. Lam, B. Z. Tang, "Aggregationinduced emission," Chem. Soc. Rev. 40, 5361– 5388 (2011).

    [17] W. Fan, B. Yung, P. Huang, X. Chen, "Nanotechnology for multimodal synergistic cancer therapy," Chem. Rev. 117, 13566–13638 (2017).

    [18] B. R. He, B. Situ, Z. J. Zhao, L. Zheng, "Promising applications of AIEgens in animal models," Small Methods 4, 1900583 (2020).

    [19] X. H. Gao, Y. Y. Cui, R. M. Levenson, L. W. K. Chung, S. M. Nie, "In vivo cancer targeting and imaging with semiconductor quantum dots," Nat. Biotechnol. 22, 969–976 (2004).

    [20] O. Bolton, K. Lee, H. J. Kim, K. Y. Lin, J. Kim, "Activating efficient phosphorescence from purely organic materials by crystal design," Nat. Chem. 3, 205–210 (2011).

    [21] R. Bakalova, Z. Zhelev, I. Aoki, H. Ohba, Y. Imai, I. Kanno, "Silica-shelled single quantum dot micelles as imaging probes with dual or multimodality," Anal. Chem. 78, 5925–5932 (2006).

    [22] X. W. Hua, Y. W. Bao, F. G. Wu, "Fluorescent carbon quantum dots with intrinsic nucleolustargeting capability for nucleolus imaging and enhanced cytosolic and nuclear drug delivery," ACS Appl. Mater. Interfaces 10, 10664–10677 (2018).

    [23] N. Panwar, A. M. Soehartono, K. K. Chan, S. W. Zeng, G. X. Xu, J. L. Qu, P. Coquet, K. T. Yong and X. Y. Chen, "Nanocarbons for biology and medicine: Sensing, imaging, and drug delivery," Chem. Rev. 119, 9559–9656 (2019).

    [24] S. Kato, T. Matsumoto, T. Ishi, T. Thiemann, M. Shigeiwa, H. Gorohmaru, S. Maeda, Y. Yamashita, S. Mataka, "Strongly red-fluorescent novel donor-pibridge- acceptor-pi-bridge-donor (D-pi-A-pi-D) type 2,1,3-benzothiadiazoles with enhanced two-photon absorption cross-sections," Chem. Commun. 2004, 2342–2343 (2004).

    [25] M. Liu, B. Gu, W. Wu, Y. Duan, H. Liu, X. Deng, M. Fan, X. Wang, X. Wei, K.-T. Yong, K. Wang, G. Xu, B. Liu, "Binary organic nanoparticles with bright aggregation-induced emission for threephoton brain vascular imaging," Chem. Mater. 32, 6437–6443 (2020).

    [26] J.C.Ge,Q.Y. Jia, W. M. Liu, M.H. Lan, B. J. Zhou, L.Guo,H.Y. Zhou, H. Y. Zhang, Y. Wang,Y.Gu, X. M. Meng, P. F. Wang, "Carbon dots with intrinsic theranostic properties for bioimaging, red-lighttriggered photodynamic/photothermal simultaneous therapy in vitro and in vivo," Adv. Healthc. Mater. 5, 665–675 (2016).

    [27] W. Pang, P. Jiang, S. Ding, Z. Bao, N. Wang, H. Wang, J. Qu, D. Wang, B. Gu, X. Wei, "Nucleolustargeted photodynamic anticancer therapy using renal-clearable carbon dots," Adv. Healthc. Mater. 9, e2000607 (2020).

    [28] S. S. Lucky, K. C. Soo, Y. Zhang, "Nanoparticles in photodynamic therapy," Chem. Rev. 115, 1990– 2042 (2015).

    [29] Y. Zhu, W. J. Tong, C. Y. Gao, H. Mohwald, "Fabrication of bovine serum albumin microcapsules by desolvation and destroyable crosslinking," J. Mater. Chem. 18, 1153–1158 (2008).

    [30] W. Qin, D. Ding, J. Z. Liu, W. Z. Yuan, Y. Hu, B. Liu, B. Z. Tang, "Biocompatible nanoparticles with aggregation-induced emission characteristics as farred/ near-infrared fluorescent bioprobes for in vitro and in vivo imaging applications," Adv. Funct. Mater. 22, 771–779 (2012).

    [31] Y. Jiang, J. Li, Z. Zeng, C. Xie, Y. Lyu, K. Pu, "Organic photodynamic nanoinhibitor for synergistic cancer therapy," Angew. Chem. Int. Ed. Engl. 58, 8161–8165 (2019).

    [32] B. J. Zhou, Y. Z. Li, G. L. Niu, M. H. Lan, Q. Y. Jia, Q. L. Liang, "Near-infrared organic dye-based nanoagent for the photothermal therapy of cancer," ACS Appl. Mater. Interfaces 8, 29899–29905 (2016).

    [33] J. M. Liang, R. X. Li, Y. W. He, C. L. Ling, Q. Wang, Y. Z. Huang, J. Qin, W. G. Lu, J. X. Wang, "A novel tumor-targeting treatment strategy uses energy restriction via co-delivery of albendazole and nanosilver," Nano Res. 11, 4507–4523 (2018).

    [34] F. Yin, B. Gu, Y. Lin, N. Panwar, S. C. Tjin, J. Qu, S. P. Lau, K.-T. Yong, "Functionalized 2D nanomaterials for gene delivery applications," Coord. Chem. Rev. 347, 77–97 (2017).

    [35] M. G. Adimoolam, A. Vijayalakshmi, M. R. Nalam, M. V. Sunkara, "Chlorin e6 loaded lactoferrin nanoparticles for enhanced photodynamic therapy," J. Mater. Chem. B 5, 9189–9196 (2017).

    [36] Y. Xu, R. He, D. Lin, M. Ji, J. Chen, "Laser beam controlled drug release from Ce6–gold nanorod composites in living cells: A FLIM study," Nanoscale 7, 2433–2441 (2015).

    [37] S. Xu, Y. Yuan, X. Cai, C.-J. Zhang, F. Hu, J. Liang, G. Zhang, D. Zhang, B. Liu, "Tuning the singlet-triplet energy gap: A unique approach to efficient photosensitizers with aggregation-induced emission (AIE) characteristics," Chem. Sci. 6, 5824– 5830 (2015).

    Xiaofu Weng, Zhouzhou Bao, Xunbin Wei. Binary organic nanoparticles with enhanced reactive oxygen species generation capability for photodynamic therapy[J]. Journal of Innovative Optical Health Sciences, 2021, 14(3): 2150009
    Download Citation