• Laser & Optoelectronics Progress
  • Vol. 60, Issue 9, 0906004 (2023)
Yibo Hu1、2, Lixin Meng1、2, Yangyang Bai1、2、*, Lizhong Zhang1、2, Xing Jiang1、2, Guohe Zheng1、2, and Zhi Liu2
Author Affiliations
  • 1College of Mechanical and Electrical Engineering, Changchun University of Science and Technology, Changchun 130022, Jilin , China
  • 2National Defense Key Laboratory of Air Ground Laser Communication, Changchun University of Science and Technology, Changchun 130022, Jilin , China
  • show less
    DOI: 10.3788/LOP220781 Cite this Article Set citation alerts
    Yibo Hu, Lixin Meng, Yangyang Bai, Lizhong Zhang, Xing Jiang, Guohe Zheng, Zhi Liu. Coarse Tracking Equivalent Compound Control Technology for Space Laser Communication[J]. Laser & Optoelectronics Progress, 2023, 60(9): 0906004 Copy Citation Text show less
    Schematic diagram of one-to-four networking of space laser communication
    Fig. 1. Schematic diagram of one-to-four networking of space laser communication
    Schematic diagram of main optical transceiver and its optical system. (a) Outline drawing of main optical transceiver; (b) schematic diagram of optical system (single path)
    Fig. 2. Schematic diagram of main optical transceiver and its optical system. (a) Outline drawing of main optical transceiver; (b) schematic diagram of optical system (single path)
    Layout diagram of one-to-four networking of space laser communication
    Fig. 3. Layout diagram of one-to-four networking of space laser communication
    Dynamic modeling analysis. (a) Schematic diagram of one-to-one experiment of space laser communication; (b) diagram of angular velocity and angular acceleration change
    Fig. 4. Dynamic modeling analysis. (a) Schematic diagram of one-to-one experiment of space laser communication; (b) diagram of angular velocity and angular acceleration change
    Amplitude-frequency characteristic curve of speed loop
    Fig. 5. Amplitude-frequency characteristic curve of speed loop
    Amplitude-frequency characteristic curve of position loop
    Fig. 6. Amplitude-frequency characteristic curve of position loop
    Block diagram of tracking system model
    Fig. 7. Block diagram of tracking system model
    Influence diagram of speed lag compensation parameters. (a) Tracking error; (b) phase margin; (c) overshoot
    Fig. 8. Influence diagram of speed lag compensation parameters. (a) Tracking error; (b) phase margin; (c) overshoot
    Influence diagram of acceleration lag compensation parameters. (a) Tracking error; (b) phase margin; (c) overshoot
    Fig. 9. Influence diagram of acceleration lag compensation parameters. (a) Tracking error; (b) phase margin; (c) overshoot
    Equivalent sine steady state tracking error curve
    Fig. 10. Equivalent sine steady state tracking error curve
    Equivalent motion attitude tracking error curve
    Fig. 11. Equivalent motion attitude tracking error curve
    Equivalent disturbance tracking error curve
    Fig. 12. Equivalent disturbance tracking error curve
    Coarse tracking experiment of main optical transceiver in networking
    Fig. 13. Coarse tracking experiment of main optical transceiver in networking
    Tracking error curve of disturbance experimental test
    Fig. 14. Tracking error curve of disturbance experimental test
    Tracking error curve of motion attitude experimental test
    Fig. 15. Tracking error curve of motion attitude experimental test
    Beacon light bandCommunication optical band
    Main optical transceiver8101550
    Slave optical transceiver8501530
    Table 1. Wavelengths for communication between main and slave optical transceivers

    Sensitivity analysis

    index

    Velocity delay compensation indexAcceleration delay compensation index
    αT2βT3
    First-order index-33.94399.81203.59981.8330
    Total-effect index10.20070.88132.32610.5594
    Table 2. Sensitivity analysis of velocity and acceleration parameters
    Simulation targetControl methodMaximum tracking error /μradAccuracy of ascension

    Motion disturbance

    coupling

    Without compensation1109-
    Velocity delay compensation3203.47
    Acceleration delay compensation4624.11
    Equivalent disturbanceWithout compensation873-
    Velocity delay compensation2853.06
    Acceleration delay compensation1179.36
    Equivalent movementWithout compensation238-
    Velocity delay compensation475.06
    Acceleration delay compensation465.17
    Table 3. Tracking error results of simulation experiment
    Simulation targetControl methodMaximum tracking error /μradAccuracy of ascension
    Equivalent disturbanceWithout compensation988.09——
    Velocity delay compensation369.652.67
    Acceleration delay compensation58.1217.00
    Equivalent movementWithout compensation285.21——
    Velocity delay compensation57.424.97
    Acceleration delay compensation56.865.02
    Table 4. Tracking error results of actual experiment
    Yibo Hu, Lixin Meng, Yangyang Bai, Lizhong Zhang, Xing Jiang, Guohe Zheng, Zhi Liu. Coarse Tracking Equivalent Compound Control Technology for Space Laser Communication[J]. Laser & Optoelectronics Progress, 2023, 60(9): 0906004
    Download Citation