• Photonics Research
  • Vol. 7, Issue 7, 748 (2019)
Hongwei Li1、2, Bo Zhao1、2, Liwei Jin1、2, Dongmei Wang1、2, and Wei Gao1、2、*
Author Affiliations
  • 1Heilongjiang Provincial Key Laboratory of Quantum Manipulation & Control, Harbin University of Science and Technology, Harbin 150080, China
  • 2Department of Physics, School of Science, Harbin University of Science and Technology, Harbin 150080, China
  • show less
    DOI: 10.1364/PRJ.7.000748 Cite this Article Set citation alerts
    Hongwei Li, Bo Zhao, Liwei Jin, Dongmei Wang, Wei Gao. Flat gain over arbitrary orbital angular momentum modes in Brillouin amplification[J]. Photonics Research, 2019, 7(7): 748 Copy Citation Text show less
    References

    [1] L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, J. P. Woerdman. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. Phys. Rev. A, 45, 8185-8189(1992).

    [2] M. J. Padgett. Orbital angular momentum 25 years on. Opt. Express, 25, 11265-11274(2017).

    [3] M. Padgett, R. Bowman. Tweezers with a twist. Nat. Photonics, 5, 343-348(2011).

    [4] J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur. Terabit free-space data transmission employing orbital angular momentum multiplexing. Nat. Photonics, 6, 488-496(2012).

    [5] P. Chen, L. L. Ma, W. Duan, J. Chen, S. J. Ge, Z. H. Zhu, M. J. Tang, R. Xu, W. Gao, T. Li, W. Hu, Y. Q. Lu. Digitalizing self-assembled chiral superstructures for optical vortex processing. Adv. Mater., 30, 1705865(2018).

    [6] P. Gregg, P. Kristensen, S. Ramachandran. Conservation of orbital angular momentum in air-core optical fibers. Optica, 2, 267-270(2015).

    [7] G. Foo, D. M. Palacios, G. A. Swartzlander. Optical vortex coronagraph. Opt. Lett., 30, 3308-3310(2005).

    [8] M. Ritschmarte. Orbital angular momentum light in microscopy. Philos. Trans. R. Soc. A, 375, 20150437(2017).

    [9] A. Mair, A. Vaziri, G. Weihs, A. Zeilinger. Entanglement of the orbital angular momentum states of photons. Nature, 412, 313-316(2001).

    [10] D. S. Ding, W. Zhang, S. Shi, Z. Y. Zhou, Y. Li, B. S. Shi, G. C. Guo. High-dimensional entanglement between distant atomic ensemble memories. Light Sci. Appl., 5, e16157(2014).

    [11] M. Erhard, R. Fickler, M. Krenn, A. Zeilinger. Twisted photons: new quantum perspectives in high dimensions. Light Sci. Appl., 7, 17146(2018).

    [12] A. Aadhi, G. K. Samanta, S. C. Kumar, M. E. Zadeh. Controlled switching of orbital angular momentum in an optical parametric oscillator. Optica, 4, 349-355(2017).

    [13] D. Gauthier, P. R. Ribič, G. Adhikary, A. Camper, C. Chappuis, R. Cucini, L. F. Dimauro, G. Dovillaire, F. Frassetto, R. Géneaux. Tunable orbital angular momentum in high-harmonic generation. Nat. Commun., 8, 14971(2017).

    [14] Z. Zhu, C. Mu, H. Li, W. Gao. Reversible orbital angular momentum photon–phonon conversion. Optica, 3, 212-217(2016).

    [15] F. Bouchard, J. Harris, H. Mand, R. W. Boyd, E. Karimi. Observation of subluminal twisted light in vacuum. Optica, 3, 351-354(2016).

    [16] S. Liu, S. Qi, Y. Zhang, P. Li, D. Wu, L. Han, J. Zhao. Highly efficient generation of arbitrary vector beams with tunable polarization, phase, and amplitude. Photon. Res., 6, 228-233(2018).

    [17] R. Xu, P. Chen, J. Tang, W. Duan, S.-J. Ge, L.-L. Ma, R.-X. Wu, W. Hu, Y.-Q. Lu. Perfect higher-order Poincaré sphere beams from digitalized geometric phases. Phys. Rev. Appl., 10, 034061(2018).

    [18] Y. Li, Z. Y. Zhou, S. L. Liu, S. K. Liu, C. Yang, Z. H. Xu, Y. H. Li, B. S. Shi. Frequency doubling of twisted light independent of integer topological charge. OSA Continuum, 2, 470-477(2019).

    [19] J. Vieira, R. M. G. M. Trines, E. P. Alves, R. A. Fonseca, J. T. Mendonca, R. Bingham, P. Norreys, L. O. Silva. High orbital angular momentum harmonic generation. Phys. Rev. Lett., 117, 265001(2016).

    [20] Z. Y. Zhou, Z. H. Zhu, S. L. Liu, Y. H. Li, S. Shi, D. S. Ding, L. X. Chen, W. Gao, G. C. Guo, B. S. Shi. Quantum twisted double-slits experiments: confirming wavefunctions’ physical reality. Sci. Bull., 62, 1185-1192(2017).

    [21] J. Vieira, R. M. G. M. Trines, E. P. Alves, R. A. Fonseca, J. T. Mendonça, R. Bingham, P. Norreys, L. O. Silva. Amplification and generation of ultra-intense twisted laser pulses via stimulated Raman scattering. Nat. Commun., 7, 10371(2016).

    [22] D. J. Kim, J. W. Kim, W. A. Clarkson. High-power master-oscillator power-amplifier with optical vortex output. Appl. Phys. B, 117, 459-464(2014).

    [23] Y. Tanaka, M. Okida, K. Miyamoto, T. Omatsu. High power picosecond vortex laser based on a large-mode-area fiber amplifier. Opt. Express, 17, 14362-14366(2009).

    [24] K. Mio, H. Tetsuya, O. Masahito, M. Katsuhiko, O. Takashige. Nanosecond vortex laser pulses with millijoule pulse energies from a Yb-doped double-clad fiber power amplifier. Opt. Express, 19, 14420-14425(2011).

    [25] G. C. Borba, S. Barreiro, L. Pruvost, D. Felinto, J. W. Tabosa. Narrow band amplification of light carrying orbital angular momentum. Opt. Express, 24, 10078-10086(2016).

    [26] S. Zhu, S. Pidishety, Y. Feng, S. Hong, J. Demas, R. Sidharthan, S. Yoo, S. Ramachandran, B. Srinivasan, J. Nilsson. Multimode-pumped Raman amplification of a higher order mode in a large mode area fiber. Opt. Express, 26, 23295-23304(2018).

    [27] E. G. Johnson, K. Miller, R. Shori, W. Li, Y. Li, Z. Zhang. Concentric vortex beam amplification: experiment and simulation. Opt. Express, 24, 1658-1667(2016).

    [28] X. Heng, J. Gan, Z. Zhang, Q. Qian, Z. Yang. Amplification of orbital angular momentum modes in an erbium-doped solid-core photonic bandgap fiber. Opt. Commun., 433, 132-136(2019).

    [29] W. Gao, C. Y. Mu, H. W. Li, Y. Q. Yang, Z. H. Zhu. Parametric amplification of orbital angular momentum beams based on light-acoustic interaction. Appl. Phys. Lett., 107, 299-313(2015).

    [30] Z. H. Zhu, P. Chen, L. W. Sheng, Y. L. Wang, W. Hu, Y. Q. Lu, W. Gao. Generation of strong cylindrical vector pulses via stimulated Brillouin amplification. Appl. Phys. Lett., 110, 141104(2017).

    [31] C. Guodong, Z. Ruiwen, S. Junqiang, X. Heng, G. Ya, F. Danqi, X. Huang. Mode conversion based on forward stimulated Brillouin scattering in a hybrid phononic-photonic waveguide. Opt. Express, 22, 32060-32070(2014).

    [32] B. Lutherdavies, B. J. Eggleton, B. Morrison, D. Marpaung, D. Y. Choi, M. Pagani, R. Pant, S. J. Madden. Low-power, chip-based stimulated Brillouin scattering microwave photonic filter with ultrahigh selectivity. Optica, 2, 76-83(2015).

    [33] H. Jiang, D. Marpaung, M. Pagani, K. Vu, D. Y. Choi, S. J. Madden, L. Yan, B. J. Eggleton. Wide-range, high-precision multiple microwave frequency measurement using a chip-based photonic Brillouin filter. Optica, 3, 30-34(2016).

    [34] E. A. Kittlaus, H. Shin, P. T. Rakich. Large Brillouin amplification in silicon. Nat. Photonics, 10, 463-467(2016).

    [35] E. A. Kittlaus, N. T. Otterstrom, P. Kharel, S. Gertler, P. T. Rakich. Non-reciprocal interband Brillouin modulation. Nat. Photonics, 12, 613-619(2018).

    [36] S. Gundavarapu, G. M. Brodnik, M. Puckett, T. Huffman, D. Bose, R. Behunin, J. Wu, T. Qiu, C. Pinho, N. Chauhan, J. Nohava, P. T. Rakich, K. D. Nelson, M. Salit, D. J. Blumenthal. Sub-hertz fundamental linewidth photonic integrated Brillouin laser. Nat. Photonics, 13, 60-67(2019).

    [37] C. Cui, Y. Wang, Z. Lu, H. Yuan, Y. Wang, Y. Chen, Q. Wang, Z. Bai, R. P. Mildren. Demonstration of 2.5 J, 10 Hz, nanosecond laser beam combination system based on non-collinear Brillouin amplification. Opt. Express, 26, 32717-32727(2018).

    [38] Y. P. Xu, M. Q. Ren, Y. Lu, P. Lu, P. Lu, X. Y. Bao, L. X. Wang, Y. Messaddeq, S. Larochelle. Multi-parameter sensor based on stimulated Brillouin scattering in inverse-parabolic graded-index fiber. Opt. Lett., 41, 1138-1141(2016).

    [39] G. Yang, X. Fan, B. Wang, Z. He. Enhancing strain dynamic range of slope-assisted BOTDA by manipulating Brillouin gain spectrum shape. Opt. Express, 26, 32599-32607(2018).

    [40] W. Wei, L. Yi, Y. Jaouën, W. Hu. Arbitrary-shaped Brillouin microwave photonic filter by manipulating a directly modulated pump. Opt. Lett., 42, 4083-4086(2017).

    [41] O. Terra, G. Grosche, H. Schnatz. Brillouin amplification in phase coherent transfer of optical frequencies over 480 km fiber. Opt. Express, 18, 16102-16111(2010).

    [42] Z. Meng, A. J. Traverso, C. W. Ballmann, M. A. Troyanova-Wood, V. V. Yakovlev. Seeing cells in a new light: a renaissance of Brillouin spectroscopy. Adv. Opt. Photon., 8, 300-327(2016).

    [43] C. W. Ballmann, Z. Meng, A. J. Traverso, M. O. Scully, V. V. Yakovlev. Impulsive Brillouin microscopy. Optica, 4, 124-128(2017).

    [44] G. Prabhakar, X. Liu, J. Demas, P. Gregg, S. Ramachandran. Phase conjugation in OAM fiber modes via stimulated Brillouin scattering. Conference on Lasers and Electro-Optics, FTh1M.4(2018).

    [45] Z. H. Zhu, L. W. Sheng, Z. W. Lv, W. M. He, W. Gao. Orbital angular momentum mode division filtering for photon-phonon coupling. Sci. Rep., 7, 40526(2017).

    [46] R. W. Boyd. Nonlinear Optics, 440-452(2008).

    [47] S. A. Collins. Lens-system diffraction integral written in terms of matrix optics. J. Opt. Soc. Am. A, 60, 1168-1177(1970).

    [48] B. D. Lv. Laser Optics, 11-14(2003).

    CLP Journals

    [1] Hongwei Li, Bo Zhao, Jipeng Ni, Wei Gao. Tailoring spatial structure of Brillouin spectra via spiral phase precoding[J]. Photonics Research, 2021, 9(4): 637

    Hongwei Li, Bo Zhao, Liwei Jin, Dongmei Wang, Wei Gao. Flat gain over arbitrary orbital angular momentum modes in Brillouin amplification[J]. Photonics Research, 2019, 7(7): 748
    Download Citation