• Matter and Radiation at Extremes
  • Vol. 6, Issue 1, 015401 (2021)
N. Jourdain1, U. Chaulagain1, M. Havlík1, D. Kramer1, D. Kumar1, I. Majerová1, V. T. Tikhonchuk1、2, G. Korn1, and S. Weber1、3、a)
Author Affiliations
  • 1ELI-Beamlines, Institute of Physics, Czech Academy of Sciences, 18221 Prague, Czech Republic
  • 2Centre Lasers Intenses et Applications, University of Bordeaux–CNRS–CEA, 33405 Talence, France
  • 3School of Science, Xi’an Jiaotong University, Xi’an 710049, China
  • show less
    DOI: 10.1063/5.0022120 Cite this Article
    N. Jourdain, U. Chaulagain, M. Havlík, D. Kramer, D. Kumar, I. Majerová, V. T. Tikhonchuk, G. Korn, S. Weber. The L4n laser beamline of the P3-installation: Towards high-repetition rate high-energy density physics at ELI-Beamlines[J]. Matter and Radiation at Extremes, 2021, 6(1): 015401 Copy Citation Text show less
    References

    [1] G. Mourou, G. Korn, W. Sandner, J. Collier. ELI Extreme Light Infrastructure (Whitebook)(2011).

    [2]

    [3] T. Tajima, S. V. Bulanov, G. A. Mourou. Optics in the relativistic regime. Rev. Mod. Phys., 78, 309(2006).

    [4] R. P. Drake. High-Energy-Density Physics: Fundamentals, Inertial Fusion, and Experimental Astrophysics(2006).

    [5] F. Graziani, M. Desjarlais, R. Redmer, S. Trickey. Frontiers and Challenges in Warm Dense Matter(2014).

    [6] C. Thaury, J.-P. Geindre, F. Quéré et al. Plasma mirrors for ultrahigh-intensity optics. Nat. Phys., 3, 424(2007).

    [7] S. Borneis, S. Bechet, S. Weber et al. P3: An installation for high-energy density plasma physics and ultra-high intensity laser–matter interaction at ELI-Beamlines. Matter Radiat. Extremes, 2, 149(2017).

    [8] R. N. Boyd, B. A. Remington, E. I. Moses et al. The national ignition facility: Ushering in a new age for high energy density science. Phys. Plasmas, 16, 041006(2009).

    [9] J.-L. Miquel, P. Vivini, C. Lion. The laser mega-joule: LMJ & PETAL status and program overview. J. Phys.: Conf. Ser., 688, 012067(2016).

    [10] L. Waxer, J. Kelly, V. Bagnoud et al. OMEGA EP: High-energy petawatt capability for the OMEGA laser facility. J. Phys., 133, 75-80(2005).

    [11] Y. Gao, W.-x. Ma, B.-Q. Zhu et al. Status of the SG-II-UP laser facility, 73-74(2013).

    [12] C. Danson, N. Hopps, S. Duffield et al. Overview of laser systems for the Orion facility at the AWE. Appl. Opt., 52, 3597-3607(2013).

    [13] P. Brummitt, R. Clarke, C. Danson et al. Vulcan Petawatt—An ultra-high-intensity interaction facility. Nucl. Fusion, 44, S239(2004).

    [14] A. Cejnarova, L. Juha, K. Jungwirth et al. The Prague asterix laser system. Phys. Plasmas, 8, 2495-2501(2001).

    [15] N. Ozaki, M. Koenig, A. Benuzzi-Mounaix et al. High energy density physics on LULI2000 laser facility. AIP Conf. Proc., 845, 1421-1424(2006).

    [16] S. B. Brown, A. Hashim, A. Gleason et al. Shock drive capabilities of a 30-Joule laser at the matter in extreme conditions hutch of the linac coherent light source. Rev. Sci. Instrum., 88, 105113(2017).

    [17] O. Hurricane, D. T. Casey, D. Callahan et al. Inertially confined fusion plasmas dominated by alpha-particle self-heating. Nat. Phys., 12, 800(2016).

    [18] L. F. Berzak Hopkins, S. Le Pape, L. Divol et al. Fusion energy output greater than the kinetic energy of an imploding shell at the National Ignition Facility. Phys. Rev. Lett., 120, 245003(2018).

    [19] E. Prene, J.-L. Miquel. LMJ and PETAL status and program overview. Nucl. Fusion, 59, 032005(2019).

    [20] Z. Zhang, S. Fujioka, N. Yamamoto et al. High-energy-density plasmas generation on GEKKO-LFEX laser facility for fast-ignition laser fusion studies and laboratory astrophysics. Plasma Phys. Controlled Fusion, 54, 124042(2012).

    [21] A. Randewich, C. Danson. High energy density physics at the atomic weapons establishment. High Power Laser Sci. Eng., 2, e40(2014).

    [22] A. Pak, D. Kraus, J. Vorberger et al. Formation of diamonds in laser-compressed hydrocarbons at planetary interior conditions. Nat. Astron., 1, 606(2017).

    [23] J. Smith, S. Banerjee, P. Mason et al. Development of a 100 J, 10 Hz laser for compression experiments at the high energy density instrument at the European XFEL. High Power Laser Sci. Eng., 6, e65(2018).

    [24] R. Betti, O. A. Hurricane. Inertial-confinement fusion with lasers. Nat. Phys., 12, 435(2016).

    [25] B. A. Remington. High energy density laboratory astrophysics. Plasma Phys. Controlled Fusion, 47, A191(2005).

    [26] M. D. Knudson, M. P. Desjarlais. Shock compression of quartz to 1.6 TPa: Redefining a pressure standard. Phys. Rev. Lett., 103, 225501(2009).

    [27] C. E. Ragan. Ultrahigh-pressure shock-wave experiments. Phys. Rev. A, 21, 458(1980).

    [28] D. E. Fratanduono, A. Fernandez-Pañella, M. Millot et al. Shock compression of liquid deuterium up to 1 TPa. Phys. Rev. Lett., 122, 255702(2019).

    [29] B. Rus, D. Kramer, P. Bakule et al. ELI-Beamlines: Development of next generation short-pulse laser systems. Proc. SPIE., 9515, 95150F(2015).

    [30] R. Antipenkov, F. Batysta, J. Bartonicek et al. Spectral shaping of a 5 Hz, multi-joule OPCPA frontend for a 10 PW laser system. Proc. SPIE., 11034, 11034OC(2019).

    [31] M. Kepler, S. Vyhlidka, D. Kramer et al. Optimization of a grating pulse stretcher suitable for kJ class 10 PW laser system. Proc. SPIE., 10238, 102380T(2017).

    [32] G. Cheriaux, E. Gaul, R. Antipenkov et al. kJ-10 PW class laser system at 1 shot a minute. SPIE Proc., 10898, 1089806(2019).

    [33] E. Gaul, R. Antipenkov, G. Cheriaux et al. Hybrid OPCPA/glass 10 PW laser at 1 shot a minute(2018).

    [34] O. Morice. Miro: Complete modeling and software for pulse amplification and propagation in high-power laser systems. Opt. Eng., 42, 1530-1541(2003).

    [35] J. Fuchs, I. Prencipe, S. Pascarelli et al. Targets for high repetition rate laser facilities: Needs, challenges and perspectives. High Power Laser Sci. Eng., 5, e17(2017).

    [36] G. H. Dahlbacka, J. S. Pearlman. Emission of rf radiation from laser-produced plasmas. J. Appl. Phys., 49, 457(1978).

    [37] A. Poyé, S. Hulin, M. Bailly-Grandvaux et al. Physics of giant electromagnetic pulse generation in short-pulse laser experiments. Phys. Rev. E, 91, 043106(2015).

    [38] F. Consoli, R. De Angelis, T. Robinson et al. Generation of intense quasi-electrostatic fields due to deposition of particles accelerated by petawatt-range laser-matter interactions. Sci. Rep., 9, 8551(2019).

    [39] R. F. Smith, T. S. Duffy. Ultra-high pressure dynamic compression of geological materials. Front. Earth Sci., 7, 23(2019).

    [40] G. W. Collins, P. M. Celliers, R. Jeanloz et al. Achieving high-density states through shock-wave loading of precompressed samples. Proc. Natl. Acad. Sci. U. S. A., 104, 9172(2007).

    [41] J.-A. Hernandez, A. Benuzzi-Mounaix, M. Guarguaglini et al. Characterizing equation of state and optical properties of dynamically pre-compressed materials. Phys. Plasmas, 26, 042704(2019).

    [42] D. K. Spaulding, J. H. Eggert, R. S. McWilliams et al. Phase transformations and metallization of magnesium oxide at high pressure and temperature. Science, 338, 1330(2012).

    [43] K. Miyanishi, Y. Tange, N. Ozaki et al. Laser-shock compression of magnesium oxide in the warm-dense-matter regime. Phys. Rev. E, 92, 023103(2015).

    [44] L. Shulenburger, S. Root, R. Lemke et al. Shock response and phase transitions of MgO at planetary impact conditions. Phys. Rev. Lett., 115, 198501(2015).

    [45] R. M. Bolis, T. Vinci, G. Morard et al. Decaying shock studies of phase transitions in MgO-SiO2 systems: Implications for the super-Earths’ interiors. Geophys. Res. Lett., 43, 9475(2016).

    [46] S. Mazevet, F. Guyot, R. Musella. Physical properties of MgO at deep planetary conditions. Phys. Rev. B, 99, 064110(2019).

    [47] V. Recoules, F. Bottin, J. Bouchet et al. Ab initio calculations of the B1-B2 phase transition in MgO. Phys. Rev. B, 99, 094113(2019).

    [48] D. N. Polsin, C. A. McCoy, M. C. Marshall et al. Hugoniot, sound velocity, and shock temperature of MgO to 2300 GPa. Phys. Rev. B, 100, 014106(2019).

    [49] J. Vančura, K. Boháček, U. Chaulagain et al. LWFA-driven betatron source for plasma physics platform at ELI-Beamlines, 117(2020).

    [50] S. Fourmaux, U. Chaulagain, E. Hallin et al. Laser-based synchrotron x-ray radiation experimental scaling. Opt. Express, 28, 3147(2020).

    [51] R. Shah, K. T. Phuoc, A. Rousse et al. Production of a keV x-ray beam from synchrotron radiation in relativistic laser-plasma interaction. Phys. Rev. Lett., 93, 135005(2004).

    [52] M. Kozlova, J. Gautier, I. Andriyash et al. Hard x-rays from laser-wakefield accelerators in density tailored plasmas. Phys. Rev. X, 10, 011061(2020).

    [53] S. Fourmaux, A. Krol, E. Hallin et al. X-ray phase contrast imaging of spherical capsules. Opt. Express, 28, 13978-13990(2020).

    [54] A. V. Baez, P. Kirkpatrick. Formation of optical images by x-rays. J. Opt. Soc. Am., 38, 766(1948).

    [55] H. S. Park, B. A. Remington, B. R. Maddox et al. Absolute measurements of x-ray backlighter sources at energies above 10 keV. Phys. Plasmas, 18, 056709(2011).

    [56] M. Harmand, F. Dorchies, O. Peyrusse et al. Broad M-band multi-keV x-ray emission from plasmas created by short laser pulses. Phys. Plasmas, 16, 063301(2009).

    [57] K. Zeil, S. Bock, S. D. Kraft et al. The scaling of proton energies in ultrashort pulse laser plasma acceleration. New J. Phys., 12, 045015(2010).

    [58] M. Šmíd, D. Batani, O. Renner, L. Antonelli. Suprathermal electron production in laser-irradiated Cu targets characterized by combined methods of x-ray imaging and spectroscopy. Plasma Phys. Controlled Fusion, 58, 075007(2016).

    [59] E. Filippov, F. P. Condamine, P. Angelo et al. High-resolution spectroscopic study of hot electron induced copper M-shell charge states emission from laser produced plasmas. High Energy Density Phys., 32, 89(2019).

    [60] S. Fourmaux, Z. Chen, M. Z. Mo et al. Laser wakefield generated x-ray probe for femtosecond time-resolved measurements of ionization states of warm dense aluminum. Rev. Sci. Instrum., 84, 123106(2013).

    [61] B. Kettle, M. Streeter, E. Gerstmayr et al. Single-shot multi-keV x-ray absorption spectroscopy using an ultrashort laser-wakefield accelerator source. Phys. Rev. Lett., 123, 254801(2019).

    [62] N. Jourdain, K. Ta Phuoc, B. Mahieu et al. Probing warm dense matter using femtosecond x-ray absorption spectroscopy with a laser-produced betatron source. Nat. Commun., 9, 3276(2018).

    [63] A. Ravasio, A. Benuzzi-Mounaix, A. Denoeud et al. Metallization of warm dense SiO2 studied by XANES spectroscopy. Phys. Rev. Lett., 113, 116404(2014).

    [64] S. P. Regan, J. Vorberger, K. Falk et al. Comparison between x-ray scattering and velocity-interferometry measurements from shocked liquid deuterium. Phys. Rev. E, 87, 043112(2013).

    [65] A. Benuzzi-Mounaix, N. Ozaki, A. Denoeud et al. Dynamic x-ray diffraction observation of shocked solid iron up to 170 GPa. Proc. Natl. Acad. Sci. U. S. A., 113, 7745(2016).

    [66] K. Poder, J. Wood, D. Chapman et al. Ultrafast imaging of laser driven shock waves using betatron x-rays from a laser wakefield accelerator. Sci. Rep., 8, 11010(2018).

    [67] S. Atzeni, D. Batani, F. Barbato et al. Quantitative phase contrast imaging of a shock-wave with a laser-plasma based x-ray source. Sci. Rep., 9, 18805(2019).

    [68] M. Koenig, A. Ravasio, S. Le Pape et al. Hard x-ray radiography for density measurement in shock compressed matter. Phys. Plasmas, 15, 060701(2008).

    [69] D. Batani, L. Fedeli, A. Morace et al. Development of x-ray radiography for high energy density physics. Phys. Plasmas, 21, 102712(2014).

    [70] S. P. Hatchett, M. H. Key, R. A. Snavely et al. Intense high-energy proton beams from Petawatt-laser irradiation of solids. Phys. Rev. Lett., 85, 2945(2000).

    [71] G. Sarri, C. A. Cecchetti, L. Romagnani et al. The application of laser-driven proton beams to the radiography of intense laser–hohlraum interactions. New J. Phys., 12, 045006(2010).

    [72] F. W. Doss, R. P. Drake, R. G. McClarren et al. Radiative effects in radiative shocks in shock tubes. High Energy Density Phys., 7, 130(2011).

    [73] B. Albertazzi, P. Mabey, E. Falize et al. Laboratory study of stationary accretion shock relevant to astrophysical systems. Sci. Rep., 9, 8157(2019).

    [74] U. Chaulagain, J. Larour, C. Stehlé et al. Structure of a laser-driven radiative shock. High Energy Density Phys., 17, 106(2015).

    [75] F. Suzuki-Vidal, S. V. Lebedev, T. Clayson et al. Counter-propagating radiative shock experiments on the Orion laser and the formation of radiative precursors. High Energy Density Phys., 23, 60(2017).

    N. Jourdain, U. Chaulagain, M. Havlík, D. Kramer, D. Kumar, I. Majerová, V. T. Tikhonchuk, G. Korn, S. Weber. The L4n laser beamline of the P3-installation: Towards high-repetition rate high-energy density physics at ELI-Beamlines[J]. Matter and Radiation at Extremes, 2021, 6(1): 015401
    Download Citation