• Matter and Radiation at Extremes
  • Vol. 5, Issue 4, 044401 (2020)
M. F. Ciappina1、2, E. E. Peganov3、4, and S. V. Popruzhenko4、a)
Author Affiliations
  • 1Institute of Physics of the ASCR, ELI-Beamlines Project, Na Slovance 2, 182 21 Prague, Czech Republic
  • 2ICFO—Institut de Ciencies Fotoniques, Barcelona Institute of Science and Technology, Av. Carl Friedrich Gauss 3, 08860 Castelldefels (Barcelona), Spain
  • 3National Research Nuclear University MEPhI, Kashirskoe Ave. 31, 115409 Moscow, Russia
  • 4Prokhorov General Physics Institute of the Russian Academy of Sciences, Vavilov Str. 38, 119991 Moscow, Russia
  • show less
    DOI: 10.1063/5.0005380 Cite this Article
    M. F. Ciappina, E. E. Peganov, S. V. Popruzhenko. Focal-shape effects on the efficiency of the tunnel-ionization probe for extreme laser intensities[J]. Matter and Radiation at Extremes, 2020, 5(4): 044401 Copy Citation Text show less
    References

    [1] M. Ivanov, F. Krausz. Attosecond physics. Rev. Mod. Phys., 81, 163(2009).

    [2] L. F. DiMauro, P. Agostini. Atomic and molecular ionization dynamics in strong laser fields: From optical to X-rays. Adv. At., Mol., Opt. Phys., 61, 117(2012).

    [3] B. M. Karnakov, V. D. Mur, S. V. Popruzhenko et al. Current progress in developing the nonlinear ionization theory of atoms and ions. Phys.-Usp., 58, 3(2015).

    [4] T. Tajima, S. V. Bulanov, G. Mourou. Optics in the relativistic regime. Rev. Mod. Phys., 78, 309(2009).

    [5] K. Z. Hatsagortsyan, A. Di Piazza, C. Müller et al. Extremely high-intensity laser interactions with fundamental quantum systems. Rev. Mod. Phys., 84, 1177(2012).

    [6] A. M. Fedotov, N. B. Narozhny. Extreme light physics. Contemp. Phys., 56, 249(2015).

    [7] B. C. Stuart, M. D. Perry, D. Pennington et al. Petawatt laser pulses. Opt. Lett., 24, 160(1999).

    [8] T. A. Planchon, P. Rousseau, S.-W. Bahk et al. Generation and characterization of the highest laser intensities (1022 W/cm2). Opt. Lett., 29, 2837(2004).

    [9] V. Yanovsky, G. Kalinchenko, V. Chvykov et al. Ultra-high intensity 300-TW laser at 0.1 Hz repetition rate. Opt. Express, 16, 2109(2008).

    [10] J. Wang, Z. Guo, L. Yu et al. Improvement of the focusing ability by double deformable mirrors for 10-PW-level Ti:sapphire chirped pulse amplification laser system. Opt. Exp., 26, 26776(2018).

    [11] C. Le Blanc, D. N. Papadopoulos, J. P. Zou, D. N. Papadopoulos, J. P. Zou, C. Le Blanc et al. First commissioning results of the Apollon laser on the 1 PW beam line. High Power Laser Sci. Eng., 4, E34(2016).

    [12] J. Y. Yoo, J. H. Sung, H. W. Lee et al. 4.2 PW, 20 fs Ti:sapphire laser at 0.1 Hz. Opt. Lett., 42, 2058(2017).

    [13] X. Zeng, K. Zhou, Y. Zuo et al. Multi-petawatt laser facility fully based on optical parametric chirped-pulse amplification. Opt. Lett., 42, 2014(2017).

    [14] Z. Gan, W. Li, L. Yu, S. Li, Z. Gan, L. Yu et al. 339 J high-energy Ti:sapphire chirped-pulse amplifier for 10 PW laser facility. Opt. Lett., 43, 5681(2018).

    [15] O. Chekhlov, G. Cheriaux, J.-P. Chambaret et al. Extreme light infrastructure: Laser architecture and major challenges. Proc. SPIE, 7721, 77211D(2010).

    [16] S. Weber, S. Borneiset, S. Bechet et al. P3: An installation for high-energy density plasma physics and ultra-high intensity laser–matter interaction at ELI-beamlines. Matter Radiat. Extremes, 2, 149(2017).

    [17] A. V. Kim, A. V. Bashinov, A. A. Gonoskov et al. New horizons for extreme light physics with mega-science project XCELS. Eur. Phys. J.: Spec. Top., 223, 1105(2014).

    [18] C. P. J. Barty, C. A. Chowdhury, B. C. Walker. “Nonrelativistic” ionization of the L-shell states in argon by a “relativistic” 1019 W/cm2 laser field. Phys. Rev. A, 63, 042712(2001).

    [19] B. C. Walker, E. A. Chowdhury. Multielectron ionization processes in ultrastrong laser fields. J. Opt. Soc. Am. B, 20, 109(2003).

    [20] Y. Fukuda, K. Yamakawa, Y. Akahane et al. Ionization of many-electron atoms by ultrafast laser pulses with peak intensities greater than 1019 W/cm2. Phys. Rev. A, 68, 065403(2003).

    [21] K. Yamakawa, Y. Fukuda, Y. Akahane et al. Super strong field ionization of atoms by 1019 W/cm2, 10 Hz laser pulses. J. Mod. Opt., 50, 2515(2003).

    [22] A. Link, J. T. Morrison, E. A. Chowdhury et al. Development of an in situ peak intensity measurement method for ultraintense single shot laser-plasma experiments at the Sandia Z petawatt facility. Rev. Sci. Instrum., 77, 10E723(2006).

    [23] S. V. Bulanov, M. F. Ciappina, S. V. Popruzhenko et al. Progress toward atomic diagnostics of ultrahigh laser intensities. Phys. Rev. A, 99, 043405(2019).

    [24] S. V. Bulanov, K. Yamanouchi, M. F. Ciappina, T. Ditmire, D. Charalambidis et al. Towards laser intensity calibration using high-field ionization. Progress in Ultrafast Intense Laser Science XV(2020).

    [25] S. V. Popruzhenko, M. F. Ciappina. Diagnostics of ultra-intense laser pulses using tunneling ionization. Laser Phys. Lett., 17, 025301(2020).

    [26] A. Di Piazza, O. Har-Shemesh. Peak intensity measurement of relativistic lasers via nonlinear Thomson scattering. Opt. Lett., 37, 1352(2012).

    [27] C. Z. He, A. Longman, J. A. Pérez-Hernández et al. Towards an in situ, full-power gauge of the focal-volume intensity of petawatt-class lasers. Opt. Exp., 27, 30020(2019).

    [28] T. G. Blackburn, E. Gerstmayr, S. P. D. Mangles et al. Model-independent inference of laser intensity. Phys. Rev. Acc. Beams., 23, 064001(2020).

    [29] F. Mackenroth, H.-P. Schlenvoigt, A. R. Holkundkar. Ultra-intense laser pulse characterization using ponderomotive electron scattering. New J. Phys., 21, 123028(2019).

    [30] A. M. Maksimchuk, A. G. R. Thomas, O. E. Vais et al. Characterizing extreme laser intensities by ponderomotive acceleration of protons from rarified gas. New J. Phys., 22, 023003(2020).

    [31] T. Ditmire, T. Toncian, A. Yandow. Direct laser ion acceleration and above-threshold ionization at intensities from 1021 W/cm2 to 3 × 1023 W/cm2. Phys. Rev. A, 100, 053406(2019).

    [32] J. R. Oppenheimer. Three notes on the quantum theory of aperiodic effects. Phys. Rev., 31, 66(1928).

    [33] M. S. Fofanov, N. B. Narozhny. Scattering of relativistic electrons by a focused laser pulse. J. Exp. Theor. Phys., 90, 753(2000).

    [34] V. I. Ritus, A. I. Nikishov, A. I. Nikishov, V. I. Ritus. Quantum processes in the field of a plane electromagnetic wave and in a constant field. I. Sov. Phys. JETP, 19, 529(1964).

    [35] E. M. Lifshitz, V. B. Berestetskii, L. P. Pitaevskii. Quantum Electrodynamics(1982).

    [36] G. T. Schappert, E. S. Sarachik. Classical theory of the scattering of intense laser radiation by free electrons. Phys. Rev. D, 1, 2738(1970).

    [37] V. Yu. Bychenkov, O. E. Vais. Direct electron acceleration for diagnostics of a laser pulse focused by an off-axis parabolic mirror. Appl. Phys. B, 124, 211(2018).

    [38] T. W. B. Kibble. Mutual refraction of electrons and photons. Phys. Rev., 150, 1060(1966).

    [39] S. P. Goreslavsky, N. B. Narozhny, S. P. Goreslavsky, V. P. Yakovlev, N. B. Narozhny. Ponderomotive scattering at relativistic laser intensities. J. Nonlinear Opt. Phys. Matter, 04, 799(1995).

    [40] D. Bauer, G. G. Paulus, D. B. Milosević et al. Above-threshold ionization by few-cycle pulses. J. Phys. B: At., Mol. Opt. Phys., 39, R203(2006).

    [41] S. V. Popruzhenko. Keldysh theory of strong field ionization: History, applications, difficulties and perspectives. J. Phys. B: At., Mol. Opt. Phys., 47, 204001(2014).

    [42] S. P. Goreslavski, D. B. Miloñević, W. Becker et al. The plateau in above-threshold ionization: The keystone of rescattering physics. J. Phys. B: At., Mol. Opt. Phys., 51, 162002(2018).

    [43] M. Kübel, C. Burger, M. Arbeiter et al. Phase- and intensity-resolved measurements of above threshold ionization by few-cycle pulses. J. Phys. B: At., Mol. Opt. Phys., 51, 134007(2018).

    [44] E. Mével, V. V. Strelkov, E. Constant. Short pulse carrier-envelope phase absolute single-shot measurement by photoionization of gases with a guided laser beam. Opt. Exp., 22, 6239(2014).

    [45] M. G. Pullen, D. E. Laban, W. C. Wallace et al. Measurement of laser intensities approaching 1015 W/cm2 with an accuracy of 1%. Phys. Rev. A, 87, 053411(2013).

    [46] L. V. Keldysh, L. V. Keldysh. Ionization in the field of a strong electromagnetic wave. Sov. Phys. JETP, 20, 1307(1965).

    [47] A. M. Perelomov, M. V. Terentev, A. M. Perelomov, V. S. Popov, V. S. Popov, M. V. Terentev. Ionization of atoms in an alternating electric field. I. Sov. Phys. JETP, 23, 924(1966).

    [48] A. M. Perelomov, A. M. Perelomov, V. S. Popov, V. S. Popov. Ionization of atoms in an alternating electric field. III. Sov. Phys. JETP, 25, 336(1967).

    [49] V. S. Popov, V. S. Popov. Tunnel and multiphoton ionization of atoms and ions in a strong laser field (Keldysh theory). Phys.-Usp., 47, 855(2004).

    [50] C. D. Lin, X. M. Tong. Empirical formula for static field ionization rates of atoms and molecules by lasers in the barrier-suppression regime. J. Phys. B: At., Mol. Opt. Phys., 38, 2593(2005).

    [51] I. Yu. Kostyukov, A. A. Golovanov. Field ionization in short and extremely intense laser pulses. Phys. Rev. A, 98, 043407(2018).

    [52] E. B. Saloman. Energy levels and observed spectral lines of ionized argon, Ar II through Ar XVIII. J. Phys. Chem. Ref. Data, 39, 033101(2010).

    [53] E. B. Saloman. Energy levels and observed spectral lines of krypton, Kr I through Kr XXXVI. J. Phys. Chem. Ref. Data, 36, 215(2007).

    [54] E. B. Saloman. Energy levels and observed spectral lines of xenon, Xe I through Xe LIV. J. Phys. Chem. Ref. Data, 33, 765(2004).

    [55] E. A. Chowdhury, I. Ghebregziabher, J. Macdonald et al. Electron momentum states and bremsstrahlung radiation from the ultraintense field ionization of atoms. Opt. Express, 12, 3911(2004).

    [56] V. Gallet, A. Borot, G. Pariente. Space-time characterization of ultra-intense femtosecond laser beams. Nat. Photonics, 10, 547(2016).

    [57] A. Jeandet, K. Nakamura, A. Borot et al. Spatio-temporal structure of a petawatt femtosecond laser beam. J. Phys.: Photonics, 1, 035001(2019).

    M. F. Ciappina, E. E. Peganov, S. V. Popruzhenko. Focal-shape effects on the efficiency of the tunnel-ionization probe for extreme laser intensities[J]. Matter and Radiation at Extremes, 2020, 5(4): 044401
    Download Citation