• Laser & Optoelectronics Progress
  • Vol. 58, Issue 21, 2114014 (2021)
Ying Wu1, Qiang Zeng1、*, Huijin Xiao1, and Shaowei Zhu2
Author Affiliations
  • 1School of Intelligent Manufacturing, Sichuan University of Arts and Science, Dazhou , Sichuan 635000, China
  • 2Chengdu Aircraft Industrial (Group) Co., Ltd, Chengdu , Sichuan 610092, China
  • show less
    DOI: 10.3788/LOP202158.2114014 Cite this Article Set citation alerts
    Ying Wu, Qiang Zeng, Huijin Xiao, Shaowei Zhu. Hydrogen Embrittlement Behavior of BS960E High Strength Steel Laser-Arc Hybrid Welded Joint[J]. Laser & Optoelectronics Progress, 2021, 58(21): 2114014 Copy Citation Text show less
    Schematic of in-situ electrochemical hydrogen charging tensile test
    Fig. 1. Schematic of in-situ electrochemical hydrogen charging tensile test
    Microstructure of welded joint. (a) Macroscopic topography; (b) weld zone; (c) coarse-grained region; (d) fine grain zone; (e) incomplete phase transition region; (f) base metal
    Fig. 2. Microstructure of welded joint. (a) Macroscopic topography; (b) weld zone; (c) coarse-grained region; (d) fine grain zone; (e) incomplete phase transition region; (f) base metal
    Hardness distribution curve of welded joint
    Fig. 3. Hardness distribution curve of welded joint
    Tensile test results. (a) Tensile engineering stress-strain curves; (b) fracture stress-strain curves under different conditions
    Fig. 4. Tensile test results. (a) Tensile engineering stress-strain curves; (b) fracture stress-strain curves under different conditions
    Fracture location. (a) Macroscopic topography; (b) incomplete phase transition zone of fractured sample in air; (c) base material area of fractured sample in air; (d) fracture position of hydrogen-filled sample at current density of 10 mA/cm2; (e) hydrogen embrittlement crack propagation path; (f) morphology of plastic fracture zone
    Fig. 5. Fracture location. (a) Macroscopic topography; (b) incomplete phase transition zone of fractured sample in air; (c) base material area of fractured sample in air; (d) fracture position of hydrogen-filled sample at current density of 10 mA/cm2; (e) hydrogen embrittlement crack propagation path; (f) morphology of plastic fracture zone
    SEM morphology of fracture surface. (a) Macroscopic appearance of fracture in air; (b) microstructure of fracture in air; (c) macroscopic morphology of in-situ hydrogen filling fracture; (d) morphology of brittle fracture zone of in-situ hydrogen-filled fracture; (e) morphology of in-situ hydrogen filled fracture toughness zone
    Fig. 6. SEM morphology of fracture surface. (a) Macroscopic appearance of fracture in air; (b) microstructure of fracture in air; (c) macroscopic morphology of in-situ hydrogen filling fracture; (d) morphology of brittle fracture zone of in-situ hydrogen-filled fracture; (e) morphology of in-situ hydrogen filled fracture toughness zone
    MaterialCSiMnSPCrNiMoCu+V+Al+Ti
    BS960E0.1700.0901.2400.0020.0120.2300.0300.5200.120
    ER80YM0.0610.3901.4500.0030.0090.3202.8100.3700.110
    Table 1. Main chemical composition of base metal and welding wire
    Ying Wu, Qiang Zeng, Huijin Xiao, Shaowei Zhu. Hydrogen Embrittlement Behavior of BS960E High Strength Steel Laser-Arc Hybrid Welded Joint[J]. Laser & Optoelectronics Progress, 2021, 58(21): 2114014
    Download Citation