• Ultrafast Science
  • Vol. 3, Issue 1, 0021 (2023)
Maksim I. Paukov1,*, Vladimir V. Starchenko1, Dmitry V. Krasnikov2, Gennady A. Komandin3..., Yuriy G. Gladush2, Sergey S. Zhukov1, Boris P. Gorshunov1, Albert G. Nasibulin2, Aleksey V. Arsenin1,4, Valentyn S. Volkov1 and Maria G. Burdanova1,5,*|Show fewer author(s)
Author Affiliations
  • 1Center for Photonics and 2D Materials, Moscow Institute of Physics and Technology, Dolgoprudny, Russia.
  • 2Skolkovo Institute of Science and Technology, Moscow, Russia.
  • 3Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow, Russia.
  • 4Laboratory of Advanced Functional Materials, Yerevan State University, Yerevan, Armenia.
  • 5Institute of Solid State Physics of the Russian Academy of Sciences, Chernogolovka, Russia.
  • show less
    DOI: 10.34133/ultrafastscience.0021 Cite this Article
    Maksim I. Paukov, Vladimir V. Starchenko, Dmitry V. Krasnikov, Gennady A. Komandin, Yuriy G. Gladush, Sergey S. Zhukov, Boris P. Gorshunov, Albert G. Nasibulin, Aleksey V. Arsenin, Valentyn S. Volkov, Maria G. Burdanova. Ultrafast Optomechanical Terahertz Modulators Based on Stretchable Carbon Nanotube Thin Films[J]. Ultrafast Science, 2023, 3(1): 0021 Copy Citation Text show less
    References

    [1] Federici JF, Schulkin B, Huang F, Gary D, Barat R, Oliveira F, Zimdars D. THz imaging and sensing for security applications—Explosives, weapons and drugs. Semicond Sci Technol. 2005;20(7):S266–S280.

    [2] Zaytsev KI, Kudrin KG, Karasik VE, Reshetov IV, Yurchenko SO. In vivo terahertz spectroscopy of pigmentary skin nevi: Pilot study of non-invasive early diagnosis of dysplasia. Appl Phys Lett. 2015;106(5): Article 053702.

    [3] Zeitler J, Gladden L. In-vitro tomography and non-destructive imaging at depth of pharmaceutical solid dosage forms. Eur J Pharm Biopharm. 2009;71(1):2–22.

    [4] Miles RE, Zhang X-C, Eisele H, Krotkus A. Terahertz frequency detection and identification of materials and objects. Dordrecht (Netherlands): Springer Netherlands; 2007.

    [5] Federici J, Moeller L. Review of terahertz and subterahertz wireless communications. J Appl Phys. 2010;107(11): Article 111101.

    [6] Sarieddeen H, Saeed N, Al-Naffouri TY, Alouini M-S. Next generation terahertz communications: A rendezvous of sensing, imaging, and localization. IEEE Commun Mag. 2020;58(5):69–75.

    [7] Rahm M, Li J-S, Padilla WJ. THz wave modulators: A brief review on different modulation techniques. J Infrared Millim Terahertz Waves. 2013;34:1–27.

    [8] Beard MC, Turner GM, Schmuttenmaer CA. Subpicosecond carrier dynamics in low-temperature grown GaAs as measured by time-resolved terahertz spectroscopy. J Appl Phys. 2001;90(12):5915–5923.

    [9] Chen Z, Chen X, Tao L, Chen K, Long M, Liu X, Yan K, Stantchev RI, Pickwell-MacPherson E, Xu J-B. Graphene controlled Brewster angle device for ultra broadband terahertz modulation. Nat Commun. 2018;9:4909.

    [10] Kersting R, Strasser G, Unterrainer K. Terahertz phase modulator. Electron Lett. 2000;36(13):1156–1158.

    [11] Kleine-Ostmann T, Dawson P, Pierz K, Hein G, Koch M. Room-temperature operation of an electrically driven terahertz modulator. Appl Phys Lett. 2004;84(18):3555–3557.

    [12] Cheng L, Jin Z, Ma Z, Su F, Zhao Y, Zhang Y, Su T, Sun Y, Xu X, Meng Z, et al. Mechanical terahertz modulation based on single-layered graphene. Adv Opt Mater. 2018;6(7): 1700877.

    [13] Liu J, Li P, Chen Y, Song X, Mao Q, Wu Y, Qi F, Zheng B, He J, Yang H, et al. Flexible terahertz modulator based on coplanar-gate graphene field-effect transistor structure. Opt Lett. 2016;41(4):816–819.

    [14] Kharlamova MV, Burdanova MG, Paukov MI, Kramberger C. Synthesis, sorting, and applications of single-chirality single-walled carbon nanotubes. Materials. 2022;15(17):5898.

    [15] Kharlamova MV, Paukov M, Burdanova MG. Nanotube functionalization: Investigation, methods and demonstrated applications. Materials. 2022;15(15):5386.

    [16] Gilshteyn EP, Romanov SA, Kopylova DS, Savostyanov GV, Anisimov AS, Glukhova OE, Nasibulin AG. Mechanically tunable single-walled carbon nanotube films as a universal material for transparent and stretchable electronics. ACS Appl Mater Interfaces. 2019;11(30):27327–27334.

    [17] Burdanova MG, Tsapenko AP, Kharlamova MV, Kauppinen EI, Gorshunov BP, Kono J, Lloyd-Hughes J. A review of the terahertz conductivity and photoconductivity of carbon nanotubes and heteronanotubes. Adv Opt Mater. 2021;9(24): Article 2101042.

    [18] Burdanova MG, Katyba GM, Kashtiban R, Komandin GA, Butler-Caddle E, Staniforth M, Mkrtchyan AA, Krasnikov DV, Gladush YG, Sloan J, et al. Ultrafast, high modulation depth terahertz modulators based on carbon nanotube thin films. Carbon. 2021;173:245–252.

    [19] Kar S, Lake J, Adeyemo S, Santra T, Joyce H. The physics of terahertz negative photoconductivity in low-dimensional materials. Mater Today Phys. 2022;23:100631.

    [20] Xu S-T, Mou L-L, Fan F, Chen S, Zhao Z, Xiang D, de Andrade MJ, Liu Z, Chang S-J. Mechanical modulation of terahertz wave via buckled carbon nanotube sheets. Opt Express. 2018;26(22):28738–28750.

    [21] Gubarev V, Yakovlev VY, Sertsu MG, Yakushev OF, Krivtsun VM, Gladush YG, Ostanin IA, Sokolov A, Schäfers F, Medvedev VV, et al. Single-walled carbon nanotube membranes for optical applications in the extreme ultraviolet range. Carbon. 2019;155:734.

    [22] Khabushev EM, Krasnikov DV, Zaremba OT, Tsapenko AP, Goldt AE, Nasibulin AG. Machine learning for tailoring optoelectronic properties of single-walled carbon nanotube films. J Phys Chem Lett. 2019;10(21):6962–6966.

    [23] Khabushev EM, Krasnikov DV, Kolodiazhnaia JV, Bubis AV, Nasibulin AG. Structure-dependent performance of single-walled carbon nanotube films in transparent and conductive applications. Carbon. 2020;161:712–717.

    [24] Kaskela A, Nasibulin AG, Timmermans MY, Aitchison B, Papadimitratos A, Tian Y, Zhu Z, Jiang H, Brown DP, Zakhidov A, et al. Aerosol-synthesized SWCNT networks with tunable conductivity and transparency by a dry transfer technique. Nano Lett. 2010;10(11):4349–4355.

    [25] Nasibulin AG, Moisala A, Brown DP, Jiang H, Kauppinen E. A novel aerosol method for single walled carbon nanotube synthesis. Chem Phys Lett. 2005;402(1–3):227–232.

    [26] Monti M, Tao SX, Staniforth M, Crocker A, Griffin E, Wijesekara A, Hatton RA, Lloyd-Hughes J. Efficient Intraband hot carrier relaxation in the perovskite semiconductor Cs1-xRbxSnI3 mediated by strong electron-phonon coupling. J Phys Chem C. 2018;122(36):20669–20675.

    [27] Burdanova MG, Tsapenko AP, Satco DA, Kashtiban R, Mosley CDW, Monti M, Staniforth M, Sloan J, Gladush YG, Nasibulin AG, et al. Giant negative terahertz photoconductivity in controllably doped carbon nanotube networks. ACS Photonics. 2019;6(4):1058–1066.

    [28] Shuba MV, Paddubskaya AG, Kuzhir PP, Slepyan GY, Seliuta D, Kašalynas I, Valušis G, Lakhtakia A. Effects of inclusion dimensions and p-type doping in the terahertz spectra of composite materials containing bundles of single-wall carbon nanotubes. J Nanophoton. 2012;6(1): Article 061707.

    [29] Shindo Y, Kuronuma Y, Takeda T, Narita F, Fu S-Y. Electrical resistance change and crack behavior in carbon nanotube/polymer composites under tensile loading. Compos Part B. 2012;43(1):39–43.

    [30] Islam MF, Milkie DE, Kane CL, Yodh AG, Kikkawa JM. Direct measurement of the polarized optical absorption cross section of single-wall carbon nanotubes. Phys Rev Lett. 2004;93(3): Article 037404.

    [31] Zhukova ES, Grebenko AK, Bubis AV, Prokhorov AS, Belyanchikov MA, Tsapenko AP, Gilshteyn EP, Kopylova DS, Gladush YG, Anisimov AS, et al. Terahertz-infrared electrodynamics of single-wall carbon nanotube films. Nanotechnology. 2017;28(44): Article 445204.

    [32] Gorshunov B, Zhukova ES, Starovatykh JS, Belyanchikov MA, Grebenko AK, Bubis AV, Tsebro VI, Tonkikh AA, Rybkovskiy DV, Nasibulin AG, et al. Terahertz spectroscopy of charge transport in films of pristine and doped single-wall carbon nanotubes. Carbon. 2018;126:544–551.

    [33] Fischer D, Pötschke P, Brünig H, Janke A. Investigation of the orientation in composite fibers of polycarbonate with multiwalled carbon nanotubes by raman microscopy. Macromol Symp. 2005;230(1):167–172.

    [34] Liu Q, Li M, Gu Y, Zhang Y, Wang S, Li Q, Zhang Z. Highly aligned dense carbon nanotube sheets induced by multiple stretching and pressing. Nanoscale. 2014;6(8):4338–4344.

    [35] Nam TH, Goto K, Yamaguchi Y, Premalal EVA, Shimamura Y, Inoue Y, Arikawa S, Yoneyama S, Ogihara S. Improving mechanical properties of high volume fraction aligned multi-walled carbon nanotube/epoxy composites by stretching and pressing. Compos Part B. 2016;85:15–23.

    [36] Kar S, Sood A. Ultrafast terahertz photoresponse of single and double-walled carbon nanotubes: Optical pump-terahertz probe spectroscopy. Carbon. 2019;144:731–736.

    [37] Xu X, Chuang K, Nicholas RJ, Johnston MB, Herz LM. Terahertz excitonic response of isolated single-walled carbon nanotubes. J Phys Chem C. 2009;113(42):18106–18109.

    [38] Lui CH, Frenzel AJ, Pilon DV, Lee Y-H, Ling X, Akselrod GM, Kong J, Gedik N. Trion-induced negative photoconductivity in monolayer MoS2. Phys Rev Lett. 2014;113: Article 166801.

    [39] Luo L, Liu Z, Yang X, Vaswani C, Cheng D, Park JM, Wang J. Anomalous variations of spectral linewidth in internal excitonic quantum transitions of ultrafast resonantly excited single-walled carbon nanotubes. Phys Rev Mater. 2019;3: Article 026003.

    Maksim I. Paukov, Vladimir V. Starchenko, Dmitry V. Krasnikov, Gennady A. Komandin, Yuriy G. Gladush, Sergey S. Zhukov, Boris P. Gorshunov, Albert G. Nasibulin, Aleksey V. Arsenin, Valentyn S. Volkov, Maria G. Burdanova. Ultrafast Optomechanical Terahertz Modulators Based on Stretchable Carbon Nanotube Thin Films[J]. Ultrafast Science, 2023, 3(1): 0021
    Download Citation