• Photonics Research
  • Vol. 12, Issue 4, 608 (2024)
Hooman Barati Sedeh and Natalia M. Litchinitser*
Author Affiliations
  • Department of Electrical and Computer Engineering, Duke University, Durham, North Carolina 27708, USA
  • show less
    DOI: 10.1364/PRJ.503182 Cite this Article Set citation alerts
    Hooman Barati Sedeh, Natalia M. Litchinitser. From non-scattering to super-scattering with Mie-tronics[J]. Photonics Research, 2024, 12(4): 608 Copy Citation Text show less
    References

    [1] D. J. Griffiths, D. F. Schroeter. Introduction to Quantum Mechanics(2018).

    [2] N. Zettili. Quantum Mechanics: Concepts and Applications, 31-36(2009).

    [3] R. Shankar. Principles of Quantum Mechanics(2012).

    [4] I. B. Zel’Dovich. Electromagnetic interaction with parity violation. Sov. Phys. JETP, 6, 1184-1186(1958).

    [5] C. S. Wood, S. C. Bennett, D. Cho. Measurement of parity nonconservation and an anapole moment in cesium. Science, 275, 1759-1763(1997).

    [6] E. E. Radescu. On the electromagnetic properties of Majorana fermions. Phys. Rev. D, 32, 1266-1268(1985).

    [7] C. M. Ho, R. J. Scherrer. Anapole dark matter. Phys. Lett. B, 722, 341-346(2013).

    [8] Y. Gao, C. M. Ho, R. J. Scherrer. Anapole dark matter at the LHC. Phys. Rev. D, 89, 045006(2014).

    [9] V. V. Flambaum, I. B. Khriplovich. P-odd nuclear forces: a source of parity violation in atoms. Sov. Phys. JETP, 52, 835-839(1980).

    [10] V. V. Flambaum, I. B. Khriplovich, O. P. Sushkov. Nuclear anapole moments. Phys. Lett. B, 146, 367-369(1984).

    [11] W. C. Haxton, E. M. Henley, M. J. Musolf. Nucleon and nuclear anapole moments. Phys. Rev. Lett., 63, 949-952(1989).

    [12] V. M. Dubovik, A. A. Cheshkov. Form-factors and multipoles in electromagnetic interactions. Sov. Phys. JETP, 24, 924-926(1965).

    [13] V. A. Fedotov, A. V. Rogacheva, V. Savinov. Resonant transparency and non-trivial non-radiating excitations in toroidal metamaterials. Sci. Rep., 3, 2967(2013).

    [14] A. E. Miroshnichenko, A. B. Evlyukhin, Y. F. Yu. Nonradiating anapole modes in dielectric nanoparticles. Nat. Commun., 6, 8069(2015).

    [15] V. Savinov, N. Papasimakis, D. P. Tsai. Optical anapoles. Commun. Phys., 2, 69(2019).

    [16] K. V. Baryshnikova, D. A. Smirnova, B. S. Luk’yanchuk, Y. S. Kivshar. Optical anapoles: concepts and applications. Adv. Opt. Mater., 7, 1801350(2019).

    [17] P. C. Wu, C. Y. Liao, V. Savinov. Optical anapole metamaterial. ACS Nano, 12, 1920-1927(2018).

    [18] Y. Yang, S. I. Bozhevolnyi. Nonradiating anapole states in nanophotonics: from fundamentals to applications. Nanotechnology, 30, 204001(2019).

    [19] R. M. Saadabad, L. Huang, A. B. Evlyukhin. Multifaceted anapole: from physics to applications. Opt. Mater. Express, 12, 1817-1837(2022).

    [20] H.-T. Chen, A. J. Taylor, N. Yu. A review of metasurfaces: physics and applications. Rep. Prog. Phys., 79, 076401(2016).

    [21] F. Ding, A. Pors, S. I. Bozhevolnyi. Gradient metasurfaces: a review of fundamentals and applications. Rep. Prog. Phys., 81, 026401(2017).

    [22] C.-W. Qiu, T. Zhang, G. Hu. Quo vadis, metasurfaces?. Nano Lett., 21, 5461-5474(2021).

    [23] A. M. Shaltout, V. M. Shalaev, M. L. Brongersma. Spatiotemporal light control with active metasurfaces. Science, 364, eaat3100(2019).

    [24] C. Gigli, Q. Li, P. Chavel. Fundamental limitations of Huygens’ metasurfaces for optical beam shaping. Laser Photonics Rev., 15, 2000448(2021).

    [25] W. T. Chen, A. Y. Zhu, F. Capasso. Flat optics with dispersion-engineered metasurfaces. Nat. Rev. Mater., 5, 604-620(2020).

    [26] N. Yu, F. Capasso. Flat optics with designer metasurfaces. Nat. Mater., 13, 139-150(2014).

    [27] W. Liu, Y. S. Kivshar. Generalized Kerker effects in nanophotonics and meta-optics. Opt. Express, 26, 13085-13105(2018).

    [28] Y. Kivshar, A. Miroshnichenko. Meta-optics with Mie resonances. Opt. Photonics News, 28, 24-31(2017).

    [29] T. Liu, R. Xu, P. Yu. Multipole and multimode engineering in Mie resonance-based metastructures. Nanophotonics, 9, 1115-1137(2020).

    [30] H. K. Shamkhi, K. V. Baryshnikova, A. Sayanskiy. Transverse scattering and generalized Kerker effects in all-dielectric Mie-resonant metaoptics. Phys. Rev. Lett., 122, 193905(2019).

    [31] H. K. Shamkhi, A. Sayanskiy, A. C. Valero. Transparency and perfect absorption of all-dielectric resonant metasurfaces governed by the transverse Kerker effect. Phys. Rev. Mater., 3, 085201(2019).

    [32] X. Zhang, A. L. Bradley. Wide-angle invisible dielectric metasurface driven by transverse Kerker scattering. Phys. Rev. B, 103, 195419(2021).

    [33] C. Li, X. Ouyang, J. Sun. Transverse scattering from nanodimers tunable with generalized cylindrical vector beams. Laser Photonics Rev., 17, 2200867(2023).

    [34] V. E. Babicheva, A. B. Evlyukhin. Resonant lattice Kerker effect in metasurfaces with electric and magnetic optical responses. Laser Photonics Rev., 11, 1700132(2017).

    [35] V. E. Babicheva. Lattice effect in Mie-resonant dielectric nanoparticle array under oblique light incidence. MRS Commun., 8, 1455-1462(2018).

    [36] A. V. Prokhorov, P. D. Terekhov, M. Y. Gubin. Resonant light trapping via lattice-induced multipole coupling in symmetrical metasurfaces. ACS Photonics, 9, 3869-3875(2022).

    [37] P. C. Wu, R. A. Pala, G. K. Shirmanesh. Dynamic beam steering with all-dielectric electro-optic III–V multiple-quantum-well metasurfaces. Nat. Commun., 10, 3654(2019).

    [38] P. Berini. Optical beam steering using tunable metasurfaces. ACS Photonics, 9, 2204-2218(2022).

    [39] J. Yang, S. Gurung, S. Bej. Active optical metasurfaces: comprehensive review on physics, mechanisms, and prospective applications. Rep. Prog. Phys., 85, 036101(2022).

    [40] L. Huang, S. Zhang, T. Zentgraf. Metasurface holography: from fundamentals to applications. Nanophotonics, 7, 1169-1190(2018).

    [41] G. Zheng, H. Mühlenbernd, M. Kenney. Metasurface holograms reaching 80% efficiency. Nat. Nanotechnol., 10, 308-312(2015).

    [42] W. Wan, J. Gao, X. Yang. Metasurface holograms for holographic imaging. Adv. Opt. Mater., 5, 1700541(2017).

    [43] V. A. Bushuev, D. M. Tsvetkov, V. V. Konotop. Unidirectional invisibility and enhanced reflection of short pulses in quasi-PT-symmetric media. Opt. Lett., 44, 5667-5670(2019).

    [44] D. M. Tsvetkov, V. A. Bushuev, V. V. Konotop. Broadband quasi-PT-symmetry sustained by inhomogeneous broadening of the spectral line. Phys. Rev. A, 98, 053844(2018).

    [45] X. Ni, Z. J. Wong, M. Mrejen. An ultrathin invisibility skin cloak for visible light. Science, 349, 1310-1314(2015).

    [46] N. Wu, Y. Jia, C. Qian. Pushing the limits of metasurface cloak using global inverse design. Adv. Opt. Mater., 11, 2202130(2023).

    [47] M. M. Sadafi, M. Taghavi, A. F. da Mota. Optical manipulation of nanoparticles: a selective excitation approach using highly focused orbital angular momentum beams. Adv. Photonics Res., 4, 2200224(2023).

    [48] M. Taghavi, H. Mosallaei. Increasing the stability margins using multi-pattern metasails and multi-modal laser beams. Sci. Rep., 12, 20034(2022).

    [49] A. Salandrino, S. Fardad, D. N. Christodoulides. Generalized Mie theory of optical forces. J. Opt. Soc. Am. B, 29, 855-866(2012).

    [50] M. Taghavi, M. M. Salary, H. Mosallaei. Multifunctional metasails for self-stabilized beam-riding and optical communication. Nanoscale Adv., 4, 1727-1740(2022).

    [51] J. Gao, C. Lan, Q. Zhao. Experimental realization of Mie-resonance terahertz absorber by self-assembly method. Opt. Express, 26, 13001-13011(2018).

    [52] J. Tian, Q. Li, P. A. Belov. High-Q all-dielectric metasurface: super and suppressed optical absorption. ACS Photonics, 7, 1436-1443(2020).

    [53] J. Gao, C. Lan, Q. Zhao. Electrically controlled Mie-resonance absorber. Opt. Express, 25, 22658-22666(2017).

    [54] M. M. Sadafi, H. Karami, M. Hosseini. A tunable hybrid graphene-metal metamaterial absorber for sensing in the THz regime. Curr. Appl. Phys., 31, 132-140(2021).

    [55] G. Li, S. Zhang, T. Zentgraf. Nonlinear photonic metasurfaces. Nat. Rev. Mater., 2, 17010(2017).

    [56] A. Krasnok, M. Tymchenko, A. Alù. Nonlinear metasurfaces: a paradigm shift in nonlinear optics. Mater. Today, 21, 8-21(2018).

    [57] A. Zalogina, L. Carletti, A. Rudenko. High-harmonic generation from a subwavelength dielectric resonator. Sci. Adv., 9, eadg2655(2023).

    [58] P. Vabishchevich, Y. Kivshar. Nonlinear photonics with metasurfaces. Photonics Res., 11, B50-B64(2023).

    [59] J. Gao, M. A. Vincenti, J. Frantz. All-optical tunable wavelength conversion in opaque nonlinear nanostructures. Nanophotonics, 11, 4027-4035(2022).

    [60] J. Gao, M. A. Vincenti, J. Frantz. Near-infrared to ultra-violet frequency conversion in chalcogenide metasurfaces. Nat. Commun., 12, 5833(2021).

    [61] N. I. Zheludev, D. Wilkowski. The rise of toroidal electrodynamics and spectroscopy. ACS Photonics, 10, 556-558(2023).

    [62] A. Ahmadivand, B. Gerislioglu, R. Ahuja. Toroidal metaphotonics and metadevices. Laser Photonics Rev., 14, 1900326(2020).

    [63] N. Talebi, S. Guo, P. A. van Aken. Theory and applications of toroidal moments in electrodynamics: their emergence, characteristics, and technological relevance. Nanophotonics, 7, 93-110(2018).

    [64] I. Fernandez-Corbaton, S. Nanz, C. Rockstuhl. On the dynamic toroidal multipoles from localized electric current distributions. Sci. Rep., 7, 7527(2017).

    [65] A. C. Valero, D. Borovkov, M. Sidorenko. On the existence of pure, broadband toroidal sources in electrodynamics. arXiv(2022).

    [66] G. Gbur, E. Wolf. Nonradiating sources and other ‘invisible’ objects. Progress in Optics, 45, 273-316(2003).

    [67] K. Kim, E. Wolf. Non-radiating monochromatic sources and their fields. Opt. Commun., 59, 1-6(1986).

    [68] G. N. Afanasiev, Y. P. Stepanovsky. The electromagnetic field of elementary time-dependent toroidal sources. J. Phys. A, 28, 4565(1995).

    [69] A. Mirzaei, A. E. Miroshnichenko, I. V. Shadrivov. Superscattering of light optimized by a genetic algorithm. Appl. Phys. Lett., 105, 011109(2014).

    [70] Z. Ruan, S. Fan. Superscattering of light from subwavelength nanostructures. Phys. Rev. Lett., 105, 013901(2010).

    [71] Y. Huang, L. Gao. Superscattering of light from core–shell nonlocal plasmonic nanoparticles. J. Phys. Chem. C, 118, 30170-30178(2014).

    [72] S. Lepeshov, A. Krasnok, A. Alú. Nonscattering-to-superscattering switch with phase-change materials. ACS Photonics, 6, 2126-2132(2019).

    [73] C. Qian, X. Lin, Y. Yang. Experimental observation of superscattering. Phys. Rev. Lett., 122, 063901(2019).

    [74] W. Liu. Superscattering pattern shaping for radially anisotropic nanowires. Phys. Rev. A, 96, 023854(2017).

    [75] D. Vercruysse, Y. Sonnefraud, N. Verellen. Unidirectional side scattering of light by a single-element nanoantenna. Nano Lett., 13, 3843-3849(2013).

    [76] B. Ng, J. Wu, S. M. Hanham. Spoof plasmon surfaces: a novel platform for THz sensing. Adv. Opt. Mater., 1, 543-548(2013).

    [77] S. Zeng, D. Baillargeat, H.-P. Hod. Nanomaterials enhanced surface plasmon resonance for biological and chemical sensing applications. Chem. Soc. Rev., 43, 3426-3452(2014).

    [78] V. I. Shcherbinin, V. I. Fesenko, T. I. Tkachova. Superscattering from subwavelength corrugated cylinders. Phys. Rev. Appl., 13, 024081(2020).

    [79] K. Asham, I. Al-Ani, L. Huang. Boosting strong coupling in a hybrid WSe2 monolayer–anapole–plasmon system. ACS Photonics, 8, 489-496(2021).

    [80] J. Wang, W. Yang, G. Sun. Boosting anapole-exciton strong coupling in all-dielectric heterostructures. Photonics Res., 10, 1744-1753(2022).

    [81] G. Grinblat, Y. Li, M. P. Nielsen. Enhanced third harmonic generation in single germanium nanodisks excited at the anapole mode. Nano Lett., 16, 4635-4640(2016).

    [82] L. Xu, M. Rahmani, K. Z. Kamali. Boosting third-harmonic generation by a mirror-enhanced anapole resonator. Light Sci. Appl., 7, 44(2018).

    [83] G. Grinblat, Y. Li, M. P. Nielsen. Efficient third harmonic generation and nonlinear subwavelength imaging at a higher-order anapole mode in a single germanium nanodisk. ACS Nano, 11, 953-960(2017).

    [84] Y. Li, Z. Huang, Z. Sui. Optical anapole mode in nanostructured lithium niobate for enhancing second harmonic generation. Nanophotonics, 9, 3575-3585(2020).

    [85] K.-H. Kim, W.-S. Rim. Anapole resonances facilitated by high-index contrast between substrate and dielectric nanodisk enhance vacuum ultraviolet generation. ACS Photonics, 5, 4769-4775(2018).

    [86] D. G. Baranov, R. Verre, P. Karpinski. Anapole-enhanced intrinsic Raman scattering from silicon nanodisks. ACS Photonics, 5, 2730-2736(2018).

    [87] M. Ghahremani, M. K. Habil, C. J. Zapata-Rodriguez. Anapole-assisted giant electric field enhancement for surface-enhanced coherent anti-Stokes Raman spectroscopy. Sci. Rep., 11, 10639(2021).

    [88] T. Zhang, Y. Che, K. Chen. Anapole mediated giant photothermal nonlinearity in nanostructured silicon. Nat. Commun., 11, 3027(2020).

    [89] T. Huang, B. Wang, W. Zhang. Ultracompact energy transfer in anapole-based metachains. Nano Lett., 21, 6102-6110(2021).

    [90] V. Mazzone, J. S. T. Gongora, A. Fratalocchi. Near-field coupling and mode competition in multiple anapole systems. Appl. Sci., 7, 542(2017).

    [91] A. Tripathi, H.-R. Kim, P. Tonkaev. Lasing action from anapole metasurfaces. Nano Lett., 21, 6563-6568(2021).

    [92] B. Luk’yanchuk, R. Paniagua-Domínguez, A. I. Kuznetsov. Hybrid anapole modes of high-index dielectric nanoparticles. Phys. Rev. A, 95, 063820(2017).

    [93] E. A. Gurvitz, K. S. Ladutenko, P. A. Dergachev. The high-order toroidal moments and anapole states in all-dielectric photonics. Laser Photonics Rev., 13, 1800266(2019).

    [94] A. C. Valero, E. A. Gurvitz, F. A. Benimetskiy. Theory, observation, and ultrafast response of the hybrid anapole regime in light scattering. Laser Photonics Rev., 15, 2100114(2021).

    [95] A. K. Ospanova, A. Basharin, A. E. Miroshnichenko. Generalized hybrid anapole modes in all-dielectric ellipsoid particles. Opt. Mater. Express, 11, 23-34(2021).

    [96] A. A. Basharin, E. Zanganeh, A. K. Ospanova. Selective superinvisibility effect via compound anapole. Phys. Rev. B, 107, 155104(2023).

    [97] A. V. Kuznetsov, A. C. Valero, H. K. Shamkhi. Special scattering regimes for conical all-dielectric nanoparticles. Sci. Rep., 12, 21904(2022).

    [98] R. Alaee, C. Rockstuhl, I. Fernandez-Corbaton. An electromagnetic multipole expansion beyond the long-wavelength approximation. Opt. Commun., 407, 17-21(2018).

    [99] A. B. Evlyukhin, T. Fischer, C. Reinhardt. Optical theorem and multipole scattering of light by arbitrarily shaped nanoparticles. Phys. Rev. B, 94, 205434(2016).

    [100] A. B. Evlyukhin, B. N. Chichkov. Multipole decompositions for directional light scattering. Phys. Rev. B, 100, 125415(2019).

    [101] J. D. Jackson. Classical Electrodynamics, 841-842(1998).

    [102] A. B. Evlyukhin, C. Reinhardt, B. N. Chichkov. Multipole light scattering by nonspherical nanoparticles in the discrete dipole approximation. Phys. Rev. B, 84, 235429(2011).

    [103] P. Lalanne, W. Yan, K. Vynck. Light interaction with photonic and plasmonic resonances. Laser Photonics Rev., 12, 1700113(2018).

    [104] T. Wu, D. Arrivault, W. Yan. Modal analysis of electromagnetic resonators: user guide for the man program. Comput. Phys. Commun., 284, 108627(2023).

    [105] M. A. Vincenti, J. Gao, D. de Ceglia. Stacked chalcogenide metasurfaces for third harmonic generation in the UV range. New J. Phys., 24, 035005(2022).

    [106] P. R. Sharapova, S. S. Kruk, A. S. Solntsev. Nonlinear dielectric nanoresonators and metasurfaces: toward efficient generation of entangled photons. Laser Photonics Rev., 17, 2200408(2023).

    [107] S. Lepeshov, A. Vyshnevyy, A. Krasnok. Switchable dual-mode nanolaser: mastering emission and invisibility through phase transition materials. Nanophotonics, 12, 3729-3736(2023).

    [108] L. Kang, R. P. Jenkins, D. H. Werner. Recent progress in active optical metasurfaces. Adv. Opt. Mater., 7, 1801813(2019).

    [109] T. Cui, B. Bai, H.-B. Sun. Tunable metasurfaces based on active materials,”. Adv. Funct. Mater., 29, 1806692(2019).

    [110] F. Monticone, D. Sounas, A. Krasnok. Can a nonradiating mode be externally excited? Nonscattering states versus embedded eigenstates. ACS Photonics, 6, 3108-3114(2019).

    [111] E. Takou, A. C. Tasolamprou, O. Tsilipakos. Dynamic anapole in metasurfaces made of sculptured cylinders. Phys. Rev. B, 100, 085431(2019).

    [112] S. E. Svyakhovskiy, V. V. Ternovski, M. I. Tribelsky. Anapole: its birth, life, and death. Opt. Express, 27, 23894-23904(2019).

    [113] M. I. Tribelsky, A. E. Miroshnichenko. Two tractable models of dynamic light scattering and their application to Fano resonances. Nanophotonics, 10, 4357-4371(2021).

    [114] H. B. Sedeh, D. Pires, N. Chandra. Manipulation of scattering spectra with topology of light and matter. Laser Photonics Rev., 17, 2200472(2023).

    [115] V. R. Tuz, V. Dmitriev, A. B. Evlyukhin. Antitoroidic and toroidic orders in all-dielectric metasurfaces for optical near-field manipulation. ACS Appl. Nano Mater., 3, 11315-11325(2020).

    [116] R. E. Raab, O. L. De Lange. Comment on ‘On the origin dependence of multipole moments in electromagnetism,’. J. Phys. D, 43, 508001(2010).

    [117] V. Dmitriev, S. D. S. Santos, A. B. Evlyukhin. Toroidic and antitoroidic orders in hexagonal arrays of dielectric trimers: magnetic group approach. Phys. Rev. B, 103, 165402(2021).

    [118] A. Ospanova, M. Cojocari, A. Basharin. Modified multipoles in photonics. Phys. Rev. B, 107, 035156(2023).

    [119] S. Tian, J. Wang, S. Sun. The anapole state excited by an oblique incidence. Phys. Scr., 98, 085515(2023).

    [120] E. Díaz-Escobar, T. Bauer, E. Pinilla-Cienfuegos. Radiationless anapole states in on-chip photonics. Light Sci. Appl., 10, 204(2021).

    [121] E. Díaz-Escobar, Á. I. Barreda, A. Griol. Experimental observation of higher-order anapoles in individual silicon disks under in-plane illumination. Appl. Phys. Lett., 121, 201105(2022).

    [122] M. Poleva, K. Frizyuk, K. Baryshnikova. Multipolar theory of bianisotropic response of meta-atoms. Phys. Rev. B, 107, L041304(2023).

    [123] A. C. Valero, H. K. Shamkhi, A. S. Kupriianov. Superscattering emerging from the physics of bound states in the continuum. Nat. Commun., 14, 4689(2023).

    [124] M. F. Limonov, M. V. Rybin, A. N. Poddubny. Fano resonances in photonics. Nat. Photonics, 11, 543-554(2017).

    [125] E. Melik-Gaykazyan, K. Koshelev, J.-H. Choi. From Fano to quasi-BIC resonances in individual dielectric nanoantennas. Nano Lett., 21, 1765-1771(2021).

    [126] M. V. Rybin, K. B. Samusev, I. S. Sinev. Mie scattering as a cascade of Fano resonances. Opt. Express, 21, 30107-30113(2013).

    [127] V. A. Zenin, A. B. Evlyukhin, S. M. Novikov. Direct amplitude-phase near-field observation of higher-order anapole states. Nano Lett., 17, 7152-7159(2017).

    Hooman Barati Sedeh, Natalia M. Litchinitser. From non-scattering to super-scattering with Mie-tronics[J]. Photonics Research, 2024, 12(4): 608
    Download Citation