• Chinese Journal of Lasers
  • Vol. 49, Issue 2, 0202012 (2022)
Caowei Zhang1、1、2, Honghao Ge1、1、2、*, Hao Fang1、1、2, Qunli Zhang1、1、2, and Jianhua Yao1、1、2
Author Affiliations
  • 1College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
  • 1Institute of Laser Advanced Manufacturing, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
  • 2Collaborative Innovation Center of High-End Laser Manufacturing Equipment, Hangzhou, Zhejiang 310014, China
  • show less
    DOI: 10.3788/CJL202249.0202012 Cite this Article Set citation alerts
    Caowei Zhang, Honghao Ge, Hao Fang, Qunli Zhang, Jianhua Yao. Effect of Solute Redistribution Coefficient on Solute Distribution in Laser Cladding[J]. Chinese Journal of Lasers, 2022, 49(2): 0202012 Copy Citation Text show less
    References

    [1] Lou F J. Analysis and numerical simulation of temperature and stress during laser cladding process[D](2009).

    [2] Yao J H[M]. Laser surface modification technology and application(2012).

    [3] Yao Y S, Tang J P, Zhang Y C et al. Development of laser fabrication technology for amorphous alloys[J]. Chinese Journal of Lasers, 48, 0202012(2021).

    [4] Hu D W, Liu Y, Chen H et al. Microstructure and properties of laser cladding Ni-based WC coating on Q960E steel[J]. Chinese Journal of Lasers, 48, 0602120(2021).

    [5] Pang X T, Gong Q F, Wang Z J et al. Microstructures and mechanical properties of 30CrMnSiA and 30CrMnSiNi2A high-strength steels after laser-cladding repair[J]. Chinese Journal of Lasers, 47, 1102002(2020).

    [6] Ji X, Sun Z G, Chang L L et al. Microstructure evolution behavior in laser melting deposition of Ti6Al4V/Inconel625 gradient high-temperature resistant coating[J]. Chinese Journal of Lasers, 46, 1102008(2019).

    [7] Ying L X, Wang L Q, Chen G C et al. Simulation and calculation of 3D laser cladding temperature field of ceramic-metal composite coatings by finite element method[J]. Heat Treatment of Metals, 29, 24-28(2004).

    [8] Dai D P, Jiang X H, Cai J P et al. Numerical simulation of temperature field and stress distribution in Inconel 718 Ni base alloy induced by laser cladding[J]. Chinese Journal of Lasers, 42, 0903005(2015).

    [9] Zhao J X, Wang G, Wang X Y et al. Multicomponent multiphase modeling of dissimilar laser cladding process with high-speed steel on medium carbon steel[J]. International Journal of Heat and Mass Transfer, 148, 118990(2020).

    [10] Mirzade F K, Niziev V G, Panchenko V Y et al. Kinetic approach in numerical modeling of melting and crystallization at laser cladding with powder injection[J]. Physica B: Condensed Matter, 423, 69-76(2013).

    [11] Zhan X H. Simulation of dendritic grain growth in weld pool of Ni-Cr binary alloy[D](2008).

    [12] Aziz M J, Kaplan T. Continuous growth model for interface motion during alloy solidification[J]. Acta Metallurgica, 36, 2335-2347(1988).

    [13] Pinomaa T, Provatas N. Quantitative phase field modeling of solute trapping and continuous growth kinetics in quasi-rapid solidification[J]. Acta Materialia, 168, 167-177(2019).

    [14] Plapp M. Unified derivation of phase-field models for alloy solidification from a grand-potential functional[J]. Physical Review E, 84, 031601(2011).

    [15] Eiken J, Böttger B, Steinbach I. Multiphase-field approach for multicomponent alloys with extrapolation scheme for numerical application[J]. Physical Review E, 73, 066122(2006).

    [16] Yang Y, Humadi H, Buta D et al. Atomistic simulations of nonequilibrium crystal-growth kinetics from alloy melts[J]. Physical Review Letters, 107, 025505(2011).

    [17] Ge H H, Xu H Z, Wang J F et al. Investigation on composition distribution of dissimilar laser cladding process using a three-phase model[J]. International Journal of Heat and Mass Transfer, 170, 120975(2021).

    [18] He X L, Song L J, Yu G et al. Solute transport and composition profile during direct metal deposition with coaxial powder injection[J]. Applied Surface Science, 258, 898-907(2011).

    [19] Ge H H, Ren F L, Li J et al. Four-phase dendritic model for the prediction of macrosegregation, shrinkage cavity, and porosity in a 55-ton ingot[J]. Metallurgical and Materials Transactions A, 48, 1139-1150(2017).

    [20] Wu M, Ludwig A, Kharicha A. A four phase model for the macrosegregation and shrinkage cavity during solidification of steel ingot[J]. Applied Mathematical Modelling, 41, 102-120(2017).

    [21] Wang T, Wu M H, Ludwig A et al. Modelling the thermosolutal convection, shrinkage flow and grain movement of globular equiaxed solidification using a three phase model[J]. International Journal of Cast Metals Research, 18, 221-228(2005).

    [22] Li J, Wu M H, Ludwig A et al. Simulation of macrosegregation in a 2.45-ton steel ingot using a three-phase mixed columnar-equiaxed model[J]. International Journal of Heat and Mass Transfer, 72, 668-679(2014).

    [23] Schneider M C, Gu J P, Beckermann C et al. Modeling of micro- and macrosegregation and freckle formation in single-crystalnickel-base superalloy directional solidification[J]. Metallurgical and Materials Transactions A, 28, 1517-1531(1997).

    [24] Pinomaa T, Lindroos M, Walbrühl M et al. The significance of spatial length scales and solute segregation in strengthening rapid solidification microstructures of 316L stainless steel[J]. Acta Materialia, 184, 1-16(2020).

    Caowei Zhang, Honghao Ge, Hao Fang, Qunli Zhang, Jianhua Yao. Effect of Solute Redistribution Coefficient on Solute Distribution in Laser Cladding[J]. Chinese Journal of Lasers, 2022, 49(2): 0202012
    Download Citation