• Infrared and Laser Engineering
  • Vol. 48, Issue 8, 805004 (2019)
Zhu Mengzhen*, Cheng Yong, Chen Xia, Wei Jingsong, Liu Xu, Cao Haiyuan, and Tan Chaoyong
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.3788/irla201948.0805004 Cite this Article
    Zhu Mengzhen, Cheng Yong, Chen Xia, Wei Jingsong, Liu Xu, Cao Haiyuan, Tan Chaoyong. Study on impulse coupling effects of different mode pulsed laser[J]. Infrared and Laser Engineering, 2019, 48(8): 805004 Copy Citation Text show less
    References

    [1] Gong Zizheng, Xu Kunbo, Mu Yongqiang, et al. The space debris environment and the active debris removal techniques[J]. Spacecraft Environmane Engineering, 2014, 31(2): 129-135. (in Chinese)

    [2] Hong Yanji, Jin Xing, Chang Hao. Discussion of key problems in space based laser centimeter orbital debris removal[J]. Infrared and Laser Engineering, 2016, 45(2): 0229001. (in Chinese)

    [3] Phipps C R, Baker K L, Libby S B, et al. Removing orbital debris with lasers[J]. Advances in Space Research, 2012, 49(9): 1283-1300.

    [4] Metzger J D, Leclaire R J, Howe S D, et al. Nuclear-powered space debris sweeper[J]. Journal of Propulsion and Power, 1989, 5(5): 582-590.

    [5] Schall W. Orbital debris removal vy laser radiation[J]. Acta Astronautica, 1991, 24: 343.

    [6] Phipps C R, Albrecht G, Friedman H, et al. ORION: Clearing near-Earth space debris using a 20-kW, 530-nm, Earth-based, repetitively pulsed laser[J]. Laser and Particle Beams, 1996, 14(1): 1-44.

    [7] Claude Phipps. ORION: challenges and benefits[C]//High-Power Laser Ablation, Proc of SPIE, 1998, 3343: 575-582.

    [8] Claude R Phipps, Kevin L Baker, Stephen B Libby, et al.Removing orbital debris with lasers[J]. Advances in Space Research, 2012, 49: 1283-1300.

    [9] Claude R Phipps. A laser optical system to re-enter or lower lowearth orbit space debris[J]. Acta Astronautica, 2014, 93:418-429.

    [10] Claude R Phipps. Laser space debris removal: Now, not later[C]//High-Power Laser System and Application, Proc of SPIE, 2015, 9255: 92553Q.

    [11] Remi Soulard, Mark N Quinn, Toshiki Tajima, et al. ICAN: Anovel laser architecture for space debris removal[J]. Acta Astronautica, 2014, 105: 192-200.

    [12] Claud R Phipps, Christophe Bonnal. A spaceborne,pulsed UV laser system for re-entering or nudging LEO debris, and re-orbiting GEO debris[J]. Acta Astronautica, 2016, 118: 224-236.

    [13] Zhu Mengzhen, Cheng Yong, Tan Chaoyong, et al. Development of foreign spaceborne laser[J]. Infrared and Laser Engineering, 2012, 41(12): 3241-3248. (in Chinese)

    [14] Liedahl D A, Rubenchik A, Libby S B, et al. Pulsed laser interactions with space debris: Target shape effects[J].Advances in space Research, 2013, 52: 895-915.

    [15] Claude R Phipps. L′ADROIT-A spaceborne ultraviolet laser system for space debris clearing[J]. Acta Astronautica, 2014, 104: 243-255.

    [16] Wang Chenglin, Zhang Yan, Wang Kunpeng. Effect of impulse coupling coefficient on inpulse vector of laser irradiating space debris[J]. Laser & Optoelectronics Progress, 2016, 53: 121404. (in Chinese)

    [17] Phipps C R, Baker K L, Libby S B, et al. Removing orbitaldebris with lasers[J]. Advances in Space Research, 2012, 49(9): 1283-1300.

    [18] Phipps C. An alternate treatment of the vapor-plasma transition, Int[J]. J Aerosp Innovations, 2011, 3: 45-50.

    [19] Phipps C R, Turner T P, Harrison R F, et al. Impulse coupling to targets in vacuum by KrF, HF and CO2 lasers[J]. J Appl Phys, 1988, 64: 1083-1096.

    [20] Phipps C, Birkan M, Bohn W, et al. Laser ablation propulsion[J]. J Propul Power, 2010, 26: 609-637.

    [21] Zheng Zhiyuan, Zhang Jie, Hao Zuoqiang, et al. Effects of target configuration on the laser plasma momentum coupling coefficient[J]. Acta Physica Sinca, 2006, 55(1): 326-330. (in Chinese)

    [22] Jin Xing, Chang Hao, Ye Jifei, et al. Methods of extreme short pulse laser ablation impulse coupling measurement[J].Infrared and Laser Engineering, 2017, 46(3): 0329002. (in Chinese)

    [23] Wen Ming, Hong Yanji, Wang Jun, et al. High speed photography measurement of impulse coupling coefficient based on compound pendulum model[J]. High Power Laser and Particle Beams, 2006, 18(7): 1061-1065. (in Chinese)

    [24] Chen Jing, Tan Rongqing, Zheng Yijun, et al. Comparison of measurement methods of impulse coupling coefficient for laser propulsion[J]. High Power Laser and Particle Beams, 2011, 23(4): 871-874. (in Chinese)

    [25] Sinko J E, Phipps C R. Modeling CO2 laser ablation impulse of polymers in vapor and plasma regimes[J]. Applied Physics Letters, 2009, 95(13): 1-3.

    [26] Phipps C R, Birkan M, Bohn W L, et a1. Review:laser-ablation propulsion[J]. Journal of Propulsion and Power,2010, 26(4): 609-637.

    [27] Forsman A C, Banks P S, Perry M D, et al. Double pulse machining as a techniques forthe enhancement of material removal rates in laser machining of metals[J]. Journal of Applied Physics, 2005, 98(3): 033302.

    [28] Qin Yuan. Thermal and mechanical effect during millisecond laser heating of metals[D]. Nanjing: Nanjing University of Science & Technology, 2011. (in Chinese)

    [29] Zheng Zhiyuan, Zhang Jie, Hao Zuoqiang, et al. Effects of target confuguration on the laser plasma momentum coupling coefficient[J]. Acta Physica Sinica, 2006, 55(1): 326-330. (in Chinese)

    [30] Cheng Yong, Zhu Mengzhen, Ma Yunfeng, et al. Mechanism and effects of complex laser ablation[J]. Infrared and Laser Engineering, 2016, 45(11): 1105005. (in Chinese)

    Zhu Mengzhen, Cheng Yong, Chen Xia, Wei Jingsong, Liu Xu, Cao Haiyuan, Tan Chaoyong. Study on impulse coupling effects of different mode pulsed laser[J]. Infrared and Laser Engineering, 2019, 48(8): 805004
    Download Citation