• Laser & Optoelectronics Progress
  • Vol. 58, Issue 20, 2010010 (2021)
Fangming Lan1, Zongju Peng1、2、*, Zhihua Lu1, Qichao Shi1, and Fen Chen2
Author Affiliations
  • 1Faculty of Information Science and Engineering, Ningbo University, Ningbo, Zhejiang 315201, China
  • 2School of Electrical and Electronic Engineering, Chongqing University of Technology, Chongqing 400054, China
  • show less
    DOI: 10.3788/LOP202158.2010010 Cite this Article Set citation alerts
    Fangming Lan, Zongju Peng, Zhihua Lu, Qichao Shi, Fen Chen. Color Constancy Algorithm of Microscopic Images Based on Autoencoder[J]. Laser & Optoelectronics Progress, 2021, 58(20): 2010010 Copy Citation Text show less
    References

    [1] Li T, Zhao J F, Mao H F et al. An efficient Fourier ptychographic microscopy imaging method based on angle illumination optimization[J]. Laser & Optoelectronics Progress, 57, 081106(2020).

    [2] Chen Y C, Wu X, Luo Z et al. Fourier ptychographic microscopy reconstruction based on deep learning[J]. Laser & Optoelectronics Progress, 57, 221106(2020).

    [3] Laakom F, Passalis N, Raitoharju J et al. Bag of color features for color constancy[J]. IEEE Transactions on Image Processing, 29, 7722-7734(2020).

    [4] Laakom F, Raitoharju J, Iosifidis A et al. Monte Carlo dropout ensembles for robust illumination estimation[EB/OL]. (2020-07-20)[2020-11-10]. https://arxiv.org/abs/2007.10114

    [5] Lam W W, Oakden W, Karami E et al. An automated segmentation pipeline for intratumoural regions in animal xenografts using machine learning and saturation transfer MRI[J]. Scientific Reports, 10, 8063(2020).

    [6] Grünewald W, DeRose J. 3-dimensional imaging of macroscopic defects in aluminum alloys: image reconstruction in 3D using milling and optical microscopy[J]. Practical Metallography, 57, 96-104(2020).

    [7] Shi Y Q, Yin Q X, Lu R S. Performance analysis of three-dimensional measurement algorithm with focus variation microscopic imaging[J]. Laser & Optoelectronics Progress, 56, 071202(2019).

    [8] Buchsbaum G. A spatial processor model for object colour perception[J]. Journal of the Franklin Institute, 310, 1-26(1980).

    [9] Land E H, McCann J J. Lightness and retinex theory[J]. Journal of the Optical Society of America, 61, 1-11(1971).

    [10] Elisabetta F G D T. Shades of gray and colour constancy[J]. Color and Imaging Conference, 2004, 37-41(2004).

    [11] van de Weijer J, Gevers T, Gijsenij A. Edge-based color constancy[J]. IEEE Transactions on Image Processing: a Publication of the IEEE Signal Processing Society, 16, 2207-2214(2007).

    [12] Cheng D L, Price B, Cohen S et al. Effective learning-based illuminant estimation using simple features[C]. //2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 7-12, 2015, Boston, MA, USA., 1000-1008(2015).

    [13] Bianco S, Cusano C, Schettini R. Color constancy using CNNs[C]. //2015 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), June 7-12, 2015, Boston, MA, USA., 81-89(2015).

    [14] Bianco S, Cusano C. Quasi-unsupervised color constancy[C]. //2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), June 15-20, 2019, Long Beach, CA, USA., 12204-12213(2019).

    [15] Afifi M, Brown M S. Sensor-independent illumination estimation for DNN models[EB/OL]. [2020-11-09]. https://arxiv.org/abs/1912.06888v1

    [16] Gong H. Convolutional mean: a simple convolutional neural network for illuminant estimation[EB/OL]. (2020-7-20)[2020-11-10]. https://arxiv.org/abs/2001.04911v1

    [17] Hernandez-Juarez D, Parisot S, Busam B et al. A multi-hypothesis approach to color constancy[C]. //2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), June 13-19, 2020, Seattle, WA, USA., 2267-2277(2020).

    [18] Das P, Baslamisli A S, Liu Y et al. Color constancy by GANs: an experimental survey[EB/OL]. (2018-12-07)[2020-11-10]. https://arxiv.org/abs/1812.03085

    [19] Ronneberger O, Fischer P, Brox T. U-Net: convolutional networks for biomedical image segmentation[M]. //Navab N, Hornegger J, Wells W M, et al. Medical image computing and computer-assisted intervention-MICCAI 2015. Lecture notes in computer science, 9351, 234-241(2015).

    [20] Mooney P. Kaggle breast histopathology images[EB/OL]. [2020-11-09]. https://www.kaggle.com/paultimothymooney/breast-histopathology-images

    [21] Cheng D L, Prasad D K, Brown M S. Illuminant estimation for color constancy: why spatial-domain methods work and the role of the color distribution[J]. Journal of the Optical Society of America. A, Optics, Image Science, and Vision, 31, 1049-1058(2014).

    [22] Hemrit G, Finlayson G D, Gijsenij A et al. Rehabilitating the ColorChecker dataset for illuminant estimation[J]. Color and Imaging Conference, 2018, 350-353(2018).

    [23] Gao S B, Zhang M, Li C Y et al. Improving color constancy by discounting the variation of camera spectral sensitivity[J]. Journal of the Optical Society of America A, 34, 1448-1462(2017).

    [24] Hordley S D, Finlayson G D. Re-evaluating colour constancy algorithms[C]. //Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004, August 26-26, 2004, Cambridge, UK., 76-79(2004).

    [25] Gehler P V, Rother C, Blake A et al. Bayesian color constancy revisited[C]. //2008 IEEE Conference on Computer Visionand Pattern Recognition, June 23-28, 2008, Anchorage, AK, USA., 1-8(2008).

    Fangming Lan, Zongju Peng, Zhihua Lu, Qichao Shi, Fen Chen. Color Constancy Algorithm of Microscopic Images Based on Autoencoder[J]. Laser & Optoelectronics Progress, 2021, 58(20): 2010010
    Download Citation