• Infrared and Laser Engineering
  • Vol. 52, Issue 8, 20230362 (2023)
Wenyue Wang1,2, Jinsong Li1,2, Jixiang Guo1,2, and Jiaqi Lv1,2
Author Affiliations
  • 1Center for Advanced Laser Technology, Hebei University of Technology, Tianjin 300401, China
  • 2Hebei Key Laboratory of Advanced Laser Technology and Equipment, Tianjin 300401, China
  • show less
    DOI: 10.3788/IRLA20230362 Cite this Article
    Wenyue Wang, Jinsong Li, Jixiang Guo, Jiaqi Lv. Research progress of vector optical beam with longitudinally varying polarization (invited)[J]. Infrared and Laser Engineering, 2023, 52(8): 20230362 Copy Citation Text show less
    References

    [1] R Dorn, S Quabis, G Leuchs. Sharper focus for a radially polarized light beam. Physical Review Letters, 91, 233901(2003).

    [2] J Chen, C Wan, Q Zhan. Vectorial optical fields: Recent advances and future prospects. Science Bulletin, 63, 54-74(2018).

    [3] S M Li, Y Li, X L Wang, et al. Taming the collapse of optical fields. Scientific Reports, 2, 1007(2012).

    [4] F Bouchard, H Larocque, A M Yao, et al. Polarization shaping for control of nonlinear propagation. Physical Review Letters, 117, 233903(2016).

    [5] H Wang, L Shi, B Lukyanchuk, et al. Creation of a needle of longitudinally polarized light in vacuum using binary optics. Nature Photonics, 2, 501-505(2008).

    [6] S Sederberg, F Kong, P B Corkum. Tesla-scale terahertz magnetic impulses. Physical Review X, 10, 011063(2020).

    [7] C Gabriel, A Aiello, W Zhong, et al. Entangling different degrees of freedom by quadrature squeezing cylindrically polarized modes. Physical Review Letters, 106, 060502(2011).

    [8] L Novotny, M R Beversluis, K S Youngworth, et al. Longitudinal field modes probed by single molecules. Physical Review Letters, 86, 5251-5254(2001).

    [9] C Varin, M Piché. Acceleration of ultra-relativistic electrons using high-intensity TM01 laser beams. Applied Physics B, 74, s83-s88(2002).

    [10] Bing Gu, Yueqiu Hu, Bo Wen. Research progress of third-order nonlinear optical effects excited by vectorial light fields (Invited). Infrared and Laser Engineering, 49, 20201050(2020).

    [11] K Lou, S X Qian, X L Wang, et al. Two-dimensional microstructures induced by femtosecond vector light fields on silicon. Optics Express, 20, 120-127(2012).

    [12] D G Grier. A revolution in optical manipulation. Nature, 424, 810-816(2003).

    [13] H Kawauchi, K Yonezawa, Y Kozawa, et al. Calculation of optical trapping forces on a dielectric sphere in the ray optics regime produced by a radially polarized laser beam. Optics Letters, 32, 1839-1841(2007).

    [14] Q Zhan. Trapping metallic Rayleigh particles with radial polarization. Optics Express, 12, 3377-3382(2004).

    [15] R Song, X Liu, S Fu, et al. Simultaneous tailoring of longitudinal and transverse mode inside an Er: YAG laser. Chinese Optics Letters, 19, 111404(2021).

    [16] C Maurer, A Jesacher, S Fürhapter, et al. Tailoring of arbitrary optical vector beams. New Journal of Physics, 9, 78(2007).

    [17] X L Wang, J Ding, W J Ni, et al. Generation of arbitrary vector beams with a spatial light modulator and a common path interferometric arrangement. Optics Letters, 32, 3549-3551(2007).

    [18] S Liu, P Li, T Peng, et al. Generation of arbitrary spatially variant polarization beams with a trapezoid Sagnac interferometer. Optics Express, 20, 21715-21721(2012).

    [19] W Han, Y Yang, W Cheng, et al. Vectorial optical field generator for the creation of arbitrarily complex fields. Optics Express, 21, 20692-20706(2013).

    [20] Li Zhang, Xinzhou Liang, Qian Lin, et al. Research progress of hybrid vector beams (Invited). Infrared and Laser Engineering, 50, 20210447(2021).

    [21] Z Chen, T Zeng, B Qian, et al. Complete shaping of optical vector beams. Optics Express, 23, 17701-17710(2015).

    [22] D Xu, B Gu, G Rui, et al. Generation of arbitrary vector fields based on a pair of orthogonal elliptically polarized base vectors. Optics Express, 24, 4177-4186(2016).

    [23] Wenjun He, Wentao Jia, Yahong Li, et al. Polarization control method of vector light field based on S-wave plate and double retarders. Infrared and Laser Engineering, 47, 1207001(2018).

    [24] S Fu, C Gao, T Wang, et al. Simultaneous generation of multiple perfect polarization vortices with selective spatial states in various diffraction orders. Optics Letters, 41, 5454-5457(2016).

    [25] S Fu, S Zhang, T Wang, et al. Rectilinear lattices of polarization vortices with various spatial polarization distributions. Optics Express, 24, 18486-18491(2016).

    [26] S Fu, Y Zhai, T Wang, et al. Tailoring arbitrary hybrid Poincaré beams through a single hologram. Applied Physics Letters, 111, 211101(2017).

    [27] S Fu, L Hai, R Song, et al. Representation of total angular momentum states of beams through a four-parameter notation. New Journal of Physics, 23 (8), 083015(2021).

    [28] D Pohl. Operation of a ruby laser in the purely transverse electric mode TE01. Applied Physics Letters, 20, 266-267(2003).

    [29] Y Pan, Y Li, S M Li, et al. Vector optical fields with bipolar symmetry of linear polarization. Optics Letters, 38, 3700-3703(2013).

    [30] Y Pan, Y Li, Z C Ren, et al. Parabolic-symmetry vector optical fields and their tightly focusing properties. Physical Review A, 89, 035801(2014).

    [31] Y Pan, Y Li, S M Li, et al. Elliptic-symmetry vector optical fields. Optics Express, 22, 19302-19313(2014).

    [32] Y Pan, X Z Gao, M Q Cai, et al. Fractal vector optical fields. Optics Letters, 41, 3161-3164(2016).

    [33] A Burvall, K Kołacz, Z Jaroszewicz, et al. Simple lens axicon. Applied Optics, 43, 4838-4844(2004).

    [34] P Suresh, C Mariyal, K B Rajesh, et al. Generation of a strong uniform transversely polarized nondiffracting beam using a high-numerical-aperture lens axicon with a binary phase mask. Applied Optics, 52, 849-853(2013).

    [35] G Scott, N Mcardle. Efficient generation of nearly diffraction-free beams using an axicon. Optical Engineering, 31, 2640(1992).

    [36] Z Jaroszewicz, V Climent, V Duran, et al. Programmable axicon for variable inclination of the focal segment. Journal of Modern Optics, 51, 2185-2190(2004).

    [37] J A Davis, E Carcole, D M Cottrell. Nondiffracting interference patterns generated with programmable spatial light modulators. Applied Optics, 35, 599-602(1996).

    [38] J A Davis, J Guertin, D M Cottrell. Diffraction-free beams generated with programmable spatial light modulators. Applied Optics, 32, 6368-6370(1993).

    [39] A Vasara, J Turunen, A T Friberg. Realization of general nondiffracting beams with computer-generated holograms. J Opt Soc Am A, 6, 1748-1754(1989).

    [40] P Li, Y Zhang, S Liu, et al. Quasi-Bessel beams with longitudinally varying polarization state generated by employing spectrum engineering. Optics Letters, 41, 4811-4814(2016).

    [41] L Li, W M Lee, X Xie, et al. Shaping self-imaging bottle beams with modified quasi-Bessel beams. Optics Letters, 39, 2278-2281(2014).

    [42] T Čižmár, K Dholakia. Tunable Bessel light modes: engineering the axial propagation. Optics Express, 17, 15558-15570(2009).

    [43] I Moreno, J A Davis, M M Sánchez-lópez, et al. Nondiffracting Bessel beams with polarization state that varies with propagation distance. Optics Letters, 40, 5451-5454(2015).

    [44] J A Davis, I Moreno, K Badham, et al. Nondiffracting vector beams where the charge and the polarization state vary with propagation distance. Optics Letters, 41, 2270-2273(2016).

    [45] S Fu, S Zhang, C Gao. Bessel beams with spatial oscillating polarization. Scientific Reports, 6, 30765(2016).

    [46] A H Dorrah, N A Rubin, A Zaidi, et al. Metasurface optics for on-demand polarization transformations along the optical path. Nature Photonics, 15, 287-296(2021).

    [47] N A Rubin, G D’aversa, P Chevalier, et al. Matrix Fourier optics enables a compact full-Stokes polarization camera. Science, 365, 1839(2019).

    [48] C K Hsueh, A A Sawchuk. Computer-generated double-phase holograms. Applied Optics, 17, 3874-3883(1978).

    [49] P Li, Y Zhang, S Liu, et al. Generation and self-healing of vector Bessel-Gauss beams with variant state of polarizations upon propagation. Optics Express, 25, 5821-5831(2017).

    [50] J Q Lü, X L Wang, G L Zhang, et al. Bessel-like beams with controllable rotating local linear polarization during propagation. Optics Letters, 45, 1738-1741(2020).

    [51] W Y Wang, J X Guo, S Liu, et al. Manipulating the variation of polarization during propagation along arbitrary circular trajectory of the Poincaré sphere. Applied Physics Letters, 121, 161102(2022).

    [52] S Liu, M Wang, P Li, et al. Abrupt polarization transition of vector autofocusing Airy beams. Optics Letters, 38, 2416-2418(2013).

    [53] P Li, Y Zhang, S Liu, et al. Generation of perfect vectorial vortex beams. Optics Letters, 41, 2205-2208(2016).

    [54] B Yang, M Su, L Lu, et al. Generation of anomalous vector Bessel beams with varying polarization order along the propagation direction. Optik, 232, 166578(2021).

    [55] W Y Tsai, J S Huang, C B Huang. Selective trapping or rotation of isotropic dielectric microparticles by optical near field in a plasmonic archimedes spiral. Nano Letters, 14, 547-552(2014).

    [56] Y Yang, X Zhu, J Zeng, et al. Anomalous Bessel vortex beam: modulating orbital angular momentum with propagation. Nanophotonics, 7, 677-682(2018).

    [57] E Asché, E Otte, C Denz. Advancing 3D shaping of vectorial light by counter-propagation of self-healing scalar and vector Bessel–Gaussian beams. Journal of Optics, 24, 104005(2022).

    CLP Journals

    [1] Hongsheng QUAN, Weifeng MA, Zan TANG, Zongquan ZHANG, Changjun JIN, Lirong QIU, Kemi XU, Weiqian ZHAO. Research on ultrafast laser processing method using tunable Bessel beam[J]. Infrared and Laser Engineering, 2024, 53(8): 20240185

    Wenyue Wang, Jinsong Li, Jixiang Guo, Jiaqi Lv. Research progress of vector optical beam with longitudinally varying polarization (invited)[J]. Infrared and Laser Engineering, 2023, 52(8): 20230362
    Download Citation