• Journal of Semiconductors
  • Vol. 41, Issue 1, 011201 (2020)
Yi Yuan and Aiwei Tang
Author Affiliations
  • Key Laboratory of Luminescence and Optical Information, Ministry of Education, School of Science, Beijing Jiaotong University, Beijing 100044, China
  • show less
    DOI: 10.1088/1674-4926/41/1/011201 Cite this Article
    Yi Yuan, Aiwei Tang. Progress on the controllable synthesis of all-inorganic halide perovskite nanocrystals and their optoelectronic applications[J]. Journal of Semiconductors, 2020, 41(1): 011201 Copy Citation Text show less
    References

    [1] A P Alivisatos. Semiconductor clusters, nanocrystals, and quantum dots. Science, 271, 933(1996).

    [2] M A El-Sayed. Small is different: shape-, size-, and composition-dependent properties of some colloidal semiconductor nanocrystals. Acc Chem Res, 37, 326(2004).

    [3] G H Carey, A L Abdelhady, Z Ning et al. Colloidal quantum dot solar cells. Chem Rev, 115, 12732(2015).

    [4] L Li, J Hu, W Yang et al. Band gap variation of size- and shape-controlled colloidal CdSe quantum rods. Nano Lett, 1, 349(2001).

    [5] X Peng, L Manna, W Yang et al. Shape control of CdSe nanocrystals. Nature, 404, 59(2000).

    [6] C R Kagan, E Lifshitz, E H Sargent et al. Building devices from colloidal quantum dots. Science, 353, 5523(2016).

    [7] J M Caruge, J E Halpert, V Wood et al. Colloidal quantum-dot light-emitting diodes with metal-oxide charge transport layers. Nat Photon, 2, 247(2008).

    [8] Y Shirasaki, G J Supran, M G Bawendi et al. Emergence of colloidal quantum-dot light-emitting technologies. Nat Photon, 7, 13(2013).

    [9] M V Kovalenko, L Protesescu, M I Bodnarchuk. Properties and potential optoelectronic applications of lead halide perovskite nanocrystals. Science, 358, 745(2017).

    [10] D Amgar, S Aharon, L Etgar. Inorganic and hybrid organo-metal perovskite nanostructures: synthesis, properties, and applications. Adv Funct Mater, 26, 8576(2016).

    [11] C C Stoumpos, M G Kanatzidis. The renaissance of halide perovskites and their evolution as emerging semiconductors. Acc Chem Res, 48, 2791(2015).

    [12] A Kojima, K Teshima, Y Shirai et al. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J Am Chem Soc, 131, 6050(2009).

    [13] M Grätzel. The light and shade of perovskite solar cells. Nat Mater, 13, 838(2014).

    [14] W S Yang, J H Noh, N J Jeon et al. High-performance photovoltaic perovskite layers fabricated through intramolecular exchange. Science, 348, 1234(2015).

    [15] M A Green, A Ho-Baillie, H J Snaith. The emergence of perovskite solar cells. Nat Photon, 8, 506(2014).

    [16] Q Jiang, Y Zhao, X Zhang et al. Surface passivation of perovskite film for efficient solar cells. Nat Photon, 13, 460(2019).

    [17] Z Xiao, R A Kerner, L Zhao et al. Efficient perovskite light-emitting diodes featuring nanometre-sized crystallites. Nat Photon, 11, 108(2017).

    [18] Y Zhao, K Zhu. Organic-inorganic hybrid lead halide perovskites for optoelectronic and electronic applications. Chem Soc Rev, 45, 655(2016).

    [19] N J Jeon, J H Noh, Y C Kim et al. Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells. Nat Mater, 13, 897(2014).

    [20] I C Smith, E T Hoke, D Solis-Ibarra et al. A layered hybrid perovskite solar-cell absorber with enhanced moisture stability. Angew Chem Int Ed, 53, 11232(2014).

    [21] J Liang, C Wang, Y Wang et al. All-inorganic perovskite solar cells. J Am Chem Soc, 138, 15829(2016).

    [22] Z Shi, S Li, Y Li et al. Strategy of solution-processed all-inorganic heterostructure for humidity/temperature-stable perovskite quantum dot light-emitting diodes. ACS Nano, 12, 1462(2018).

    [23] C C Stoumpos, C D Malliakas, J A Peters et al. Crystal growth of the perovskite semiconductor CsPbBr3: a new material for high-energy radiation detection. Cryst Growth Des, 13, 2722(2013).

    [24] X Li, F Cao, D Yu et al. All inorganic halide perovskites nanosystem: synthesis, structural features, optical properties and optoelectronic applications. Small, 13, 1603996(2017).

    [25] W Ahmad, J Khan, G Niu et al. Inorganic CsPbI3 perovskite-based solar cells: A choice for a tandem device. Solar RRL, 1, 1700048(2017).

    [26] L Protesescu, S Yakunin, M I Bodnarchuk et al. Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color gamut. Nano Lett, 15, 3692(2015).

    [27] D Yang, M Cao, Q Zhong et al. All-inorganic cesium lead halide perovskite nanocrystals: synthesis, surface engineering and applications. J Mater Chem C, 7, 757(2019).

    [28] C Huo, B Cai, Z Yuan et al. Two-dimensional metal halide perovskites: theory, synthesis, and optoelectronics. Small Methods, 1, 1600018(2017).

    [29] Y Wang, X Li, J Song et al. All-inorganic colloidal perovskite quantum dots: a new class of lasing materials with favorable characteristics. Adv Mater, 27, 7101(2015).

    [30] S A Veldhuis, P P Boix, N Yantara et al. Perovskite materials for light-emitting diodes and lasers. Adv Mater, 28, 6804(2016).

    [31] H L Wells. Über die Cäsium-und Kalium-Bleihalogenide. Zeitschrift für anorganische Chemie, 3, 195(1893).

    [32] C K Møller. A phase transition in cæsium plumbochloride. Nature, 180, 981(1957).

    [33] M Yarema, O Yarema, W M M Lin et al. Upscaling colloidal nanocrystal hot-injection syntheses via reactor underpressure. Chem Mater, 29, 796(2017).

    [34] X Chen, L Peng, K Huang et al. Non-injection gram-scale synthesis of cesium lead halide perovskite quantum dots with controllable size and composition. Nano Res, 9, 1994(2016).

    [35] F Zhang, H Zhong, C Chen et al. Brightly luminescent and color-tunable colloidal CH3NH3PbX3 (X = Br, I, Cl) quantum dots: potential alternatives for display technology. ACS Nano, 9, 4533(2015).

    [36] X Li, Y Wu, S Zhang et al. CsPbX3 quantum dots for lighting and displays: room-temperature synthesis, photoluminescence superiorities, underlying origins and white light-emitting diodes. Adv Funct Mater, 26, 2435(2016).

    [37] Y Tong, E Bladt, M F Aygüler et al. Highly luminescent cesium lead halide perovskite nanocrystals with tunable composition and thickness by ultrasonication. Angew Chem Int Ed, 55, 13887(2016).

    [38] X Li, Y Liu, X Song et al. Intercrossed carbon nanorings with pure surface states as low-cost and environment-friendly phosphors for white-light-emitting diodes. Angew Chem Int Ed, 54, 1759(2015).

    [39] J Li, L Xu, T Wang et al. 50-fold EQE improvement up to 6.27% of solution-processed all-inorganic perovskite CsPbBr3 QLEDs via surface ligand density control. Adv Mater, 29, 1603885(2017).

    [40] D N Dirin, L Protesescu, D Trummer et al. Harnessing defect-tolerance at the nanoscale: highly luminescent lead halide perovskite nanocrystals in mesoporous silica matrixes. Nano Lett, 16, 5866(2016).

    [41] Q Pan, H Hu, Y Zou et al. Microwave-assisted synthesis of high-quality “all-inorganic” CsPbX3 (X = Cl, Br, I) perovskite nanocrystals and their application in light emitting diodes. J Mater Chem C, 5, 10947(2017).

    [42] G Niu, A Ruditskiy, M Vara et al. Toward continuous and scalable production of colloidal nanocrystals by switching from batch to droplet reactors. Chem Soc Rev, 44, 5806(2015).

    [43] I Lignos, S Stavrakis, G Nedelcu et al. Synthesis of cesium lead halide perovskite nanocrystals in a droplet-based microfluidic platform: fast parametric space mapping. Nano Lett, 16, 1869(2016).

    [44] H Liao, S Guo, S Cao et al. A general strategy for in situ growth of all-inorganic CsPbX3 (X = Br, I, and Cl) perovskite nanocrystals in polymer fibers toward significantly enhanced water/thermal stabilities. Adv Opt Mater, 6, 1800346(2018).

    [45] Z Y Zhu, Q Q Yang, L F Gao et al. Solvent-free mechanosynthesis of composition-tunable cesium lead halide perovskite quantum dots. J Phys Chem Lett, 8, 1610(2017).

    [46] Roo J De, M Ibáñez, P Geiregat et al. Highly dynamic ligand binding and light absorption coefficient of cesium lead bromide perovskite nanocrystals. ACS Nano, 10, 2071(2016).

    [47] T Friščić, I Halasz, P J Beldon et al. Real-time and in situ monitoring of mechanochemical milling reactions. Nat Chem, 5, 66(2013).

    [48] J Chen, Y Fu, L Samad et al. Vapor-phase epitaxial growth of aligned nanowire networks of cesium lead halide perovskites (CsPbX3, X = Cl, Br, I). Nano Lett, 17, 460(2016).

    [49] G Nedelcu, L Protesescu, S Yakunin et al. Fast anion-exchange in highly luminescent nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, I). Nano Lett, 15, 5635(2015).

    [50] Q A Akkerman, V D’Innocenzo, S Accornero et al. Tuning the optical properties of cesium lead halide perovskite nanocrystals by anion exchange reactions. J Am Chem Soc, 137, 10276(2015).

    [51] L Dou, A B Wong, Y Yu et al. Atomically thin two-dimensional organic-inorganic hybrid perovskites. Science, 349, 1518(2015).

    [52] V D’Innocenzo, Kandada A R Srimath, Bastiani M De et al. Tuning the light emission properties by band gap engineering in hybrid lead halide perovskite. J Am Chem Soc, 136, 17730(2014).

    [53] H Yang, Y Zhang, J Pan et al. Room-temperature engineering of all-inorganic perovskite nanocrsytals with different dimensionalities. Chem Mater, 29, 8978(2017).

    [54] K H Wang, L Wu, L Li et al. Large-scale synthesis of highly luminescent perovskite-related CsPb2Br5 nanoplatelets and their fast anion exchange. Angew Chem Int Ed, 55, 8328(2016).

    [55] L Ruan, J Lin, W Shen et al. Ligand-mediated synthesis of compositionally related cesium lead halide CsPb2X5 nanowires with improved stability. Nanoscale, 10, 7658(2018).

    [56] X Zhang, B Xu, J Zhang et al. All-inorganic perovskite nanocrystals for high-efficiency light emitting diodes: dual-phase CsPbBr3-CsPb2Br5 composites. Adv Funct Mater, 26, 4595(2016).

    [57] X Tang, Z Hu, W Yuan et al. Perovskite CsPb2Br5 microplate laser with enhanced stability and tunable properties. Adv Opt Mater, 5, 1600788(2017).

    [58] J Li, Q Yu, Y He et al. Cs2PbI2Cl2, all-inorganic two-dimensional Ruddlesden–Popper mixed halide perovskite with optoelectronic response. J Am Chem Soc, 140, 11085(2018).

    [59] D Chen, Z Wan, X Chen et al. Large-scale room-temperature synthesis and optical properties of perovskite-related Cs4PbBr6 fluorophores. J Mater Chem C, 4, 10646(2016).

    [60] M I Saidaminov, J Almutlaq, S Sarmah et al. Pure Cs4PbBr6: highly luminescent zero-dimensional perovskite solids. ACS Energy Lett, 1, 840(2016).

    [61] Y Wang, D Yu, Z Wang et al. Solution-grown CsPbBr3/Cs4PbBr6 perovskite nanocomposites: toward temperature-insensitive optical gain. Small, 13, 1701587(2017).

    [62] Q A Akkerman, S Park, E Radicchi et al. Nearly monodisperse insulator Cs4PbX6 (X = Cl, Br, I) nanocrystals, their mixed halide compositions, and their transformation into CsPbX3 nanocrystals. Nano Lett, 17, 1924(2017).

    [63] Z Liu, Y Bekenstein, X Ye et al. Ligand mediated transformation of cesium lead bromide perovskite nanocrystals to lead depleted Cs4PbBr6 nanocrystals. J Am Chem Soc, 139, 5309(2017).

    [64] G Li, H Wang, Z Zhu et al. Shape and phase evolution from CsPbBr3 perovskite nanocubes to tetragonal CsPb2Br5 nanosheets with an indirect bandgap. Chem Commun, 52, 11296(2016).

    [65] L Wu, H Hu, Y Xu et al. From nonluminescent Cs4PbX6 (X = Cl, Br, I) nanocrystals to highly luminescent CsPbX3 nanocrystals: water-triggered transformation through a CsX-stripping mechanism. Nano Lett, 17, 5799(2017).

    [66] F Palazon, C Urso, L De Trizio et al. Postsynthesis transformation of insulating Cs4PbBr6 nanocrystals into bright perovskite CsPbBr3 through physical and chemical extraction of CsBr. ACS Energy Lett, 2, 2445(2017).

    [67] W Shen, L Ruan, Z Shen et al. Reversible light-mediated compositional and structural transitions between CsPbBr3 and CsPb2Br5 nanosheets. Chem Commun, 54, 2804(2018).

    [68] I Chung, J H Song, J Im et al. CsSnI3: semiconductor or metal? High electrical conductivity and strong near-infrared photoluminescence from a single material. High hole mobility and phase-transitions. J Am Chem Soc, 134, 8579(2012).

    [69] T Udayabhaskararao, L Houben, H Cohen et al. A mechanistic study of phase transformation in perovskite nanocrystals driven by ligand passivation. Chem Mater, 30, 84(2017).

    [70] L Ruan, W Shen, A Wang et al. Alkyl-thiol ligand-induced shape-and crystalline phase-controlled synthesis of stable perovskite-related CsPb2Br5 nanocrystals at room temperature. J Phys Chem Lett, 8, 3853(2017).

    [71] L Huang, W R L Lambrecht. Electronic band structure, phonons, and exciton binding energies of halide perovskites CsSnCl3, CsSnBr3, and CsSnI3. Phys Rev B, 88, 165203(2013).

    [72] B Yang, J Chen, F Hong et al. Lead-free, air-stable all-inorganic cesium bismuth halide perovskite nanocrystals. Angew Chem Int Ed, 56, 12471(2017).

    [73] F Yang, D Hirotani, G Kapil et al. All-inorganic CsPb1–xGexI2Br perovskite with enhanced phase stability and photovoltaic performance. Angew Chem Int Ed, 57, 12745(2018).

    [74] J Liang, Z Liu, L Qiu et al. Enhancing optical, electronic, crystalline, and morphological properties of cesium lead halide by Mn substitution for high-stability all-inorganic perovskite solar cells with carbon electrodes. Adv Energy Mater, 8, 1800504(2018).

    [75] Z Xiao, K Z Du, W Meng et al. Intrinsic instability of Cs2In(I)M(III)X6 (M = Bi, Sb; X = halogen) double perovskites: a combined density functional theory and experimental study. J Am Chem Soc, 139, 6054(2017).

    [76] S Xiang, W Li, Y Wei et al. The synergistic effect of non-stoichiometry and Sb-doping on air-stable α-CsPbI3 for efficient carbon-based perovskite solar cells. Nanoscale, 10, 9996(2018).

    [77] W Van der Stam, J J Geuchies, T Altantzis et al. Highly emissive divalent-ion-doped colloidal CsPb1–xMxBr3 perovskite nanocrystals through cation exchange. J Am Chem Soc, 139, 4087(2017).

    [78] A Wang, X Yan, M Zhang et al. Controlled synthesis of lead-free and stable perovskite derivative Cs2SnI6 nanocrystals via a facile hot-injection process. Chem Mater, 28, 8132(2016).

    [79] G Xing, M H Kumar, W K Chong et al. Solution-processed tin-based perovskite for near-infrared lasing. Adv Mater, 28, 8191(2016).

    [80] A Wang, Y Guo, F Muhammad et al. Controlled synthesis of lead-free cesium tin halide perovskite cubic nanocages with high stability. Chem Mater, 29, 6493(2017).

    [81] Y Wang, J Tu, T Li et al. Convenient preparation of CsSnI3 quantum dots, excellent stability, and the highest performance of lead-free inorganic perovskite solar cells so far. J Mater Chem A, 7, 7683(2019).

    [82] A Pan, B He, X Fan et al. Insight into the ligand-mediated synthesis of colloidal CsPbBr3 perovskite nanocrystals: the role of organic acid, base, and cesium precursors. ACS Nano, 10, 7943(2016).

    [83] S Sun, D Yuan, Y Xu et al. Ligand-mediated synthesis of shape-controlled cesium lead halide perovskite nanocrystals via reprecipitation process at room temperature. ACS Nano, 10, 3648(2016).

    [84] M Imran, F Di Stasio, Z Dang et al. Colloidal synthesis of strongly fluorescent CsPbBr3 nanowires with width tunable down to the quantum confinement regime. Chem Mater, 28, 6450(2016).

    [85] Y Yuan, Z Liu, Z Liu et al. Photoluminescence and self-assembly of cesium lead halide perovskite nanocrystals: effects of chain length of organic amines and reaction temperature. Appl Surf Sci, 405, 280(2017).

    [86] C Wang, Y Zhang, A Wang et al. Controlled synthesis of composition tunable formamidinium cesium double cation lead halide perovskite nanowires and nanosheets with improved stability. Chem Mater, 29, 2157(2017).

    [87] Z Liang, S Zhao, Z Xu et al. Shape-controlled synthesis of all-inorganic CsPbBr3 perovskite nanocrystals with bright blue emission. ACS Appl Mater Inter, 8, 28824(2016).

    [88] D Zhang, S W Eaton, Y Yu et al. Solution-phase synthesis of cesium lead halide perovskite nanowires. J Am Chem Soc, 137, 9230(2015).

    [89] L N Quan, R Quintero-Bermudez, O Voznyy et al. Highly emissive green perovskite nanocrystals in a solid state crystalline matrix. Adv Mater, 29, 1605945(2017).

    [90] Y Bekenstein, B A Koscher, S W Eaton et al. Highly luminescent colloidal nanoplates of perovskite cesium lead halide and their oriented assemblies. J Am Chem Soc, 137, 16008(2015).

    [91] Y Liu, M Guo, S Dong et al. Room temperature colloidal synthesis of CsPbBr3 nanowires with tunable length, width and composition. J Mater Chem C, 6, 7797(2018).

    [92] D Amgar, A Stern, D Rotem et al. Tunable length and optical properties of CsPbX3 (X = Cl, Br, I) nanowires with a few unit cells. Nano Lett, 17, 1007(2017).

    [93] X Tang, Z Zu, H Shao et al. All-inorganic perovskite CsPb(Br/I)3 nanorods for optoelectronic application. Nanoscale, 8, 15158(2016).

    [94] D Yang, Y Zou, P Li et al. Large-scale synthesis of ultrathin cesium lead bromide perovskite nanoplates with precisely tunable dimensions and their application in blue light-emitting diodes. Nano Energy, 47, 235(2018).

    [95] J Shamsi, Z Dang, P Bianchini et al. Colloidal synthesis of quantum confined single crystal CsPbBr3 nanosheets with lateral size control up to the micrometer range. J Am Chem Soc, 138, 7240(2016).

    [96] S Seth, A Samanta. A facile methodology for engineering the morphology of CsPbX3 perovskite nanocrystals under ambient condition. Sci Rep, 6, 37693(2016).

    [97] G Li, H Wang, T Zhang et al. Solvent-polarity-engineered controllable synthesis of highly fluorescent cesium lead halide perovskite quantum dots and their use in white light-emitting diodes. Adv Funct Mater, 26, 8478(2016).

    [98] Z J Li, E Hofman, A H Davis et al. General strategy for the growth of CsPbX3 (X = Cl, Br, I) perovskite nanosheets from the assembly of nanorods. Chem Mater, 30, 3854(2018).

    [99] H Wang, N Sui, X Bai et al. Emission recovery and stability enhancement of inorganic perovskite quantum dots. J Phys Chem Lett, 9, 4166(2018).

    [100] L Wu, Q Zhong, D Yang et al. Improving the stability and size tunability of cesium lead halide perovskite nanocrystals using trioctylphosphine oxide as the capping ligand. Langmuir, 33, 12689(2017).

    [101] C Wang, A S R Chesman, J J Jasieniak. Stabilizing the cubic perovskite phase of CsPbI3 nanocrystals by using an alkyl phosphinic acid. Chem Commun, 53, 232(2017).

    [102] J Pan, L N Quan, Y Zhao et al. Highly efficient perovskite-quantum-dot light-emitting diodes by surface engineering. Adv Mater, 28, 8718(2016).

    [103] J Pan, S P Sarmah, B Murali et al. Air-stable surface-passivated perovskite quantum dots for ultra-robust, single-and two-photon-induced amplified spontaneous emission. J Phys Chem Lett, 6, 5027(2015).

    [104] F Palazon, Q A Akkerman, M Prato et al. X-ray lithography on perovskite nanocrystals films: from patterning with anion-exchange reactions to enhanced stability in air and water. ACS Nano, 10, 1224(2015).

    [105] Y Wang, M Zhi, Y Q Chang et al. Stable, ultralow threshold amplified spontaneous emission from CsPbBr3 nanoparticles exhibiting trion gain. Nano Lett, 18, 4976(2018).

    [106] B J Bohn, Y Tong, M Gramlich et al. Boosting tunable blue luminescence of halide perovskite nanoplatelets through postsynthetic surface trap repair. Nano Lett, 18, 5231(2018).

    [107] J Y Woo, Y Kim, J Bae et al. Highly stable cesium lead halide perovskite nanocrystals through in situ lead halide inorganic passivation. Chem Mater, 29, 7088(2017).

    [108] F Li, Y Liu, H Wang et al. Postsynthetic surface trap removal of CsPbX3 (X = Cl, Br, or I) quantum dots via a ZnX2/hexane solution toward an enhanced luminescence quantum yield. Chem Mater, 30, 8546(2018).

    [109] Y Wu, C Wei, X Li et al. In situ passivation of PbBr64– octahedra toward blue luminescent CsPbBr3 nanoplatelets with near 100% absolute quantum yield. ACS Energy Lett, 3, 2030(2018).

    [110] S Huang, B Wang, Q Zhang et al. Postsynthesis potassium-modification method to improve atability of CsPbBr3 perovskite nanocrystals. Adv Opt Mater, 6, 1701106(2018).

    [111] M Lu, X Zhang, X Bai et al. Spontaneous silver doping and surface passivation of CsPbI3 perovskite active layer enable light-emitting devices with an external quantum efficiency of 11.2%. ACS Energy Lett, 3, 1571(2018).

    [112] H C Wang, S Y Lin, A C Tang et al. Mesoporous silica particles integrated with all-inorganic CsPbBr3 perovskite quantum-dot nanocomposites (MP-PQDs) with high stability and wide color gamut used for backlight display. Angew Chem Int Ed, 55, 7924(2016).

    [113] C Sun, X Shen, Y Zhang et al. Highly luminescent, stable, transparent and flexible perovskite quantum dot gels towards light-emitting diodes. Nanotechnology, 28, 365601(2017).

    [114] B Luo, Y C Pu, S A Lindley et al. Organolead halide perovskite nanocrystals: branched capping ligands control crystal size and stability. Angew Chem Int Ed, 55, 8864(2016).

    [115] A Loiudice, S Saris, E Oveisi et al. CsPbBr3 QD/AlOx inorganic nanocomposites with exceptional stability in water, light, and heat. Angew Chem Int Ed, 56, 10696(2017).

    [116] L Zhou, K Yu, F Yang et al. All-inorganic perovskite quantum dot/mesoporous TiO2 composite-based photodetectors with enhanced performance. Dalton Trans, 46, 1766(2017).

    [117] H Wu, Z Kang, Z Zhang et al. Interfacial charge behavior modulation in perovskite quantum dot-monolayer MoS2 0D-2D mixed-dimensional van der Waals heterostructures. Adv Funct Mater, 28, 1802015(2018).

    [118] W Chen, J Hao, W Hu et al. Enhanced stability and tunable photoluminescence in perovskite CsPbX3/ZnS quantum dot heterostructure. Small, 13, 1604085(2017).

    [119] Y F Xu, M Z Yang, B X Chen et al. A CsPbBr3 perovskite quantum dot/graphene oxide composite for photocatalytic CO2 reduction. J Am Chem Soc, 139, 5660(2017).

    [120] X Li, D Yu, J Chen et al. Constructing fast carrier tracks into flexible perovskite photodetectors to greatly improve responsivity. ACS Nano, 11, 2015(2017).

    [121] Y Wei, X Deng, Z Xie et al. Enhancing the stability of perovskite quantum dots by encapsulation in crosslinked polystyrene beads via a swelling-shrinking strategy toward superior water resistance. Adv Funct Mater, 27, 1703535(2017).

    [122] Y Wang, Y Zhu, J Huang et al. CsPbBr3 perovskite quantum dots-based monolithic electrospun fiber membrane as an ultrastable and ultrasensitive fluorescent sensor in aqueous medium. J Phys Chem Lett, 7, 4253(2016).

    [123] M Zhang, M Wang, Z Yang et al. Preparation of all-inorganic perovskite quantum dots-polymer composite for white LEDs application. J Alloy Compd, 748, 537(2018).

    [124] J Hai, H Li, Y Zhao et al. Designing of blue, green, and red CsPbX3 perovskite-codoped flexible films with water resistant property and elimination of anion-exchange for tunable white light emission. Chem Commun, 53, 5400(2017).

    [125] M Meyns, M Perálvarez, A Heuer-Jungemann et al. Polymer-enhanced stability of inorganic perovskite nanocrystals and their application in color conversion LEDs. ACS Appl Mater Inter, 8, 19579(2016).

    [126] S Hou, Y Guo, Y Tang et al. Synthesis and stabilization of colloidal perovskite nanocrystals by multidentate polymer micelles. ACS Appl Mater Inter, 9, 18417(2017).

    [127] Y Guo, Q Wang, W A Saidi. Structural stabilities and electronic properties of high-angle grain boundaries in perovskite cesium lead halides. J Phys Chem C, 121, 1715(2017).

    [128] B A Koscher, J K Swabeck, N D Bronstein et al. Essentially trap-free CsPbBr3 colloidal nanocrystals by postsynthetic thiocyanate surface treatment. J Am Chem Soc, 139, 6566(2017).

    [129] A Swarnkar, R Chulliyil, V K Ravi et al. Colloidal CsPbBr3 perovskite nanocrystals: luminescence beyond traditional quantum dots. Angew Chem Int Ed, 54, 15424(2015).

    [130] M Kulbak, D Cahen, G Hodes. How important is the organic part of lead halide perovskite photovoltaic cells? Efficient CsPbBr3 cells.. J Phys Chem Lett, 6, 2452(2015).

    [131] P Wang, X Zhang, Y Zhou et al. Solvent-controlled growth of inorganic perovskite films in dry environment for efficient and stable solar cells. Nat Commun, 9, 2225(2018).

    [132] E M Sanehira, A R Marshall, J A Christians et al. Enhanced mobility CsPbI3 quantum dot arrays for record-efficiency, high-voltage photovoltaic cells. Sci Adv, 3, eaao4204(2017).

    [133] H Choi, J Jeong, H B Kim et al. Cesium-doped methylammonium lead iodide perovskite light absorber for hybrid solar cells. Nano Energy, 7, 80(2014).

    [134] G E Eperon, G M Paterno, R J Sutton et al. Inorganic caesium lead iodide perovskite solar cells. J Mater Chem A, 3, 19688(2015).

    [135] J S Yao, J Ge, B N Han et al. Ce3+-doping to modulate photoluminescence kinetics for efficient CsPbBr3 nanocrystals based light-emitting diodes. J Am Chem Soc, 140, 3626(2018).

    [136] S A Veldhuis, Y F Ng, R Ahmad et al. Crown ethers enable room-temperature synthesis of CsPbBr3 quantum dots for light-emitting diodes. ACS Energy Lett, 3, 526(2018).

    [137] Y Li, Y Lv, Z Guo et al. One-step preparation of long-term stable and flexible CsPbBr3 perovskite quantum dots/ethylene vinyl acetate copolymer composite films for white light-emitting diodes. ACS Appl Mater Inter, 10, 15888(2018).

    [138] X Song, X Liu, D Yu et al. Boosting two-dimensional MoS2/CsPbBr3 photodetectors via enhanced light absorbance and interfacial carrier separation. ACS Appl Mater Inter, 10, 2801(2018).

    [139] P Ramasamy, D H Lim, B Kim et al. All-inorganic cesium lead halide perovskite nanocrystals for photodetector applications. Chem Commun, 52, 2067(2016).

    [140] C Bao, J Yang, S Bai et al. High performance and stable all-inorganic metal halide perovskite-based photodetectors for optical communication applications. Adv Mater, 30, 1803422(2018).

    [141] Q Chen, J Wu, X Ou et al. All-inorganic perovskite nanocrystal scintillators. Nature, 561, 88(2018).

    [142] S Yakunin, L Protesescu, F Krieg et al. Low-threshold amplified spontaneous emission and lasing from colloidal nanocrystals of caesium lead halide perovskites. Nat Commun, 6, 8056(2015).

    [143] Z Liu, J Yang, J Du et al. Robust subwavelength single-mode perovskite nanocuboid laser. ACS Nano, 12, 5923(2018).

    [144] Q Zhang, R Su, X Liu et al. High-quality whispering-gallery-mode lasing from cesium lead halide perovskite nanoplatelets. Adv Funct Mater, 26, 6238(2016).

    [145] J Hou, S Cao, Y Wu et al. Inorganic colloidal perovskite quantum dots for robust solar CO2 reduction. Chem-Eur J, 23, 9481(2017).

    [146] L Zhou, Y F Xu, B X Chen et al. Synthesis and photocatalytic application of stable lead-free Cs2AgBiBr6 perovskite nanocrystals. Small, 14, 1703762(2018).

    [147] J Song, T Fang, J Li et al. Organic-inorganic hybrid passivation enables perovskite QLEDs with an EQE of 16.48%. Adv Mater, 30, 1805409(2018).

    [148] K Lin, J Xing, L N Quan et al. Perovskite light-emitting diodes with external quantum efficiency exceeding 20 percent. Nature, 562, 245(2018).

    [149] J Song, L Xu, J Li et al. Monolayer and few-layer all-inorganic perovskites as a new family of two-dimensional semiconductors for printable optoelectronic devices. Adv Mater, 28, 4861(2016).

    [150] J A Christians, P Schulz, J S Tinkham et al. Tailored interfaces of unencapsulated perovskite solar cells for > 1000 hour operational stability. Nat Energy, 3, 68(2018).

    [151] R J Sutton, G E Eperon, L Miranda et al. Bandgap-tunable cesium lead halide perovskites with high thermal stability for efficient solar cells. Adv Energy Mater, 6, 1502458(2016).

    [152] A Swarnkar, A R Marshall, E M Sanehira et al. Quantum dot-induced phase stabilization of α-CsPbI3 perovskite for high-efficiency photovoltaics. Science, 354, 92(2016).

    [153] S Yang, S Chen, E Mosconi et al. Stabilizing halide perovskite surfaces for solar cell operation with wide-bandgap lead oxysalts. Science, 365, 473(2019).

    [154] H Bian, D Bai, Z Jin et al. Graded bandgap CsPbI2+xBr1-x perovskite solar cells with a stabilized efficiency of 14.4%. Joule, 2, 1500(2018).

    [155] Y Wang, M I Dar, L K Ono et al. Thermodynamically stabilized β-CsPbI3-based perovskite solar cells with efficiencies > 18%. Science, 365, 591(2019).

    [156] X Zhang, H Lin, H Huang et al. Enhancing the brightness of cesium lead halide perovskite nanocrystal based green light-emitting devices through the interface engineering with perfluorinated ionomer. Nano Lett, 16, 1415(2016).

    [157] J Song, J Li, X Li et al. Quantum dot light-emitting diodes based on inorganic perovskite cesium lead halides (CsPbX3). Adv Mater, 27, 7162(2015).

    [158] G R Yettapu, D Talukdar, S Sarkar et al. Terahertz conductivity within colloidal CsPbBr3 perovskite nanocrystals: remarkably high carrier mobilities and large diffusion lengths. Nano Lett, 16, 4838(2016).

    [159] F Li, C Ma, H Wang et al. Ambipolar solution-processed hybrid perovskite phototransistors. Nat Commun, 6, 8238(2015).

    [160] C Huo, X Liu, Z Wang et al. High-performance low-voltage-driven phototransistors through CsPbBr3-2D crystal van der Waals heterojunctions. Adv Opt Mater, 6, 1800152(2018).

    [161] S P Senanayak, B Yang, T H Thomas et al. Understanding charge transport in lead iodide perovskite thin-film field-effect transistors. Sci Adv, 3, e1601935(2017).

    [162] X Liu, D Yu, X Song et al. Metal halide perovskites: synthesis, ion migration, and application in field-effect transistors. Small, 14, 1801460(2018).

    [163] T C Jellicoe, J M Richter, H F J Glass et al. Synthesis and optical properties of lead-free cesium tin halide perovskite nanocrystals. J Am Chem Soc, 138, 2941(2016).

    [164] M Leng, Z Chen, Y Yang et al. Lead-free, blue emitting bismuth halide perovskite quantum dots. Angew Chem Int Ed, 55, 15012(2016).

    [165] P Reiss, M Protiere, L Li. Core/shell semiconductor nanocrystals. Small, 5, 154(2009).

    Yi Yuan, Aiwei Tang. Progress on the controllable synthesis of all-inorganic halide perovskite nanocrystals and their optoelectronic applications[J]. Journal of Semiconductors, 2020, 41(1): 011201
    Download Citation