• Opto-Electronic Engineering
  • Vol. 47, Issue 10, 200366 (2020)
Zhang Fei1, Guo Yinghui1、2, Pu Mingbo1、2, Li Xiong1、2, Ma Xiaoliang1、2、3, and Luo Xiangang1、2、*
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • show less
    DOI: 10.12086/oee.2020.200366 Cite this Article
    Zhang Fei, Guo Yinghui, Pu Mingbo, Li Xiong, Ma Xiaoliang, Luo Xiangang. Metasurfaces enabled by asymmetric photonic spin-orbit interactions[J]. Opto-Electronic Engineering, 2020, 47(10): 200366 Copy Citation Text show less
    References

    [1] Marrucci L, Manzo C, Paparo D. Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media[J]. Physical Review Letters, 2006, 96(16): 163905.

    [2] Anandan J. The geometric phase[J]. Nature, 1992, 360(6402): 307–313.

    [3] Chyba T H, Wang L J, Mandel L, et al. Measurement of the Pancharatnam phase for a light beam[J]. Optics Letters, 1988, 13(7): 562–564.

    [4] Berry M V. Quantal phase factors accompanying adiabatic changes[J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1984, 392(1802): 45–57.

    [5] Biener G, Niv A, Kleiner V, et al. Formation of helical beams by use of Pancharatnam-Berry phase optical elements[J]. Optics Letters, 2002, 27(21): 1875–1877.

    [6] Bomzon Z, Biener G, Kleiner V, et al. Space-variant Pancharat-nam-Berry phase optical elements with computer-generated subwavelength gratings[J]. Optics Letters, 2002, 27(13): 1141–1143.

    [7] Luo X G,Pu M B,Li X, et al. Broadband spin Hall effect of light in single nanoapertures[J]. Light: Science & Applications, 2017, 6(6): e16276.

    [8] Guo YH, Pu M B, Zhao Z Y, et al. Merging geometric phase and plasmon retardation phase in continuouslyshaped metasurfaces for arbitrary orbital angular momentum generation[J]. ACS Photonics, 2016, 3(11): 2022–2029.

    [9] Tang DL, Wang CT,Zhao ZY, et al. Ultrabroadband superos-cillatory lens composed by plasmonic metasurfaces for subdif-fraction light focusing[J]. Laser & Photonics Reviews, 2015, 9(6): 713–719.

    [10] Li Z, Zhang T, Wang Y Q, et al. Achromatic broadband su-per-resolution imaging by super-oscillatory metasurface[J]. La-ser & Photonics Reviews, 2018, 12(10): 1800064.

    [11] LiX, Chen LW,LiY, et al. Multicolor 3D meta-holography by broadband plasmonic modulation[J]. Science Advances, 2016, 2(11): e1601102.

    [12] Pu M B,Li X,Guo YH, et al. Nanoapertures with ordered rota-tions: symmetry transformation and wide-angle flat lensing[J]. Optics Express, 2017, 25(25): 31471–31477.

    [13] PuM B, Li X,MaX L, et al. Catenary optics for achromatic generation of perfect optical angular momentum[J]. Science Advances, 2015, 1(9): e1500396.

    [14] Luo XG,Pu M B,Guo YH, et al. Catenary functions meet elec-tromagnetic waves: opportunities and promises[J]. Advanced Optical Materials, 2020, doi: 10.1002/adom.202001194.

    [15] Luo X G. Engineering Optics 2.0: A Revolution in Optical Theo-ries, Materials, Devices and Systems[M]. Singapore: Springer, 2019.

    [16] Li X,Pu M B,Zhao ZY, et al. Catenary nanostructures as com-pact Bessel beam generators[J]. Scientific Reports, 2016, 6: 20524.

    [17] Wang Y Q,Pu M B,ZhangZJ, et al. Quasi-continuous meta-surface for ultra-broadband and polarization-controlled electro-magnetic beam deflection[J]. Scientific Reports, 2016, 5: 17733.

    [18] GuoYH, Yan L S,PanW, et al. Scattering engineering in con-tinuously shaped metasurface: an approach for electromagnetic illusion[J]. Scientific Reports, 2016, 6: 30154.

    [19] Guo Y H, Huang Y J, Li X, et al. Polarization-controlled broad-band accelerating beams generation by single catenary-shaped metasurface[J]. Advanced Optical Materials, 2019, 7(18): 1900503.

    [20] Zhang F, Zeng Q Y, Pu M B, et al. Broadband and high-efficiency accelerating beam generation by dielectric catenary metasur-faces[J]. Nanophotonics, 2020, 9(9): 2829–2837.

    [21] Liu K P,GuoYH, PuMB, et al. Wide field-of-view and broad-band terahertz beam steering based on gap Plasmon geodesic antennas[J]. Scientific Reports, 2017, 7: 41642.

    [22] Tan X H. Anomalous scattering-induced circular dichroism in continuously shaped metasurface[J]. Opto-Electronic Engineer-ing, 2017, 44(1): 87–91.

    [23] Wang D P, Hwang Y, Dai Y M, et al. Broadband high-efficiency chiral splitters and holograms from dielectric nanoarc metasur-faces[J]. Small, 2019, 15(20): 1900483.

    [24] Shi Z J,ZhuAY, LiZY, et al. Continuous angle-tunable bire-fringence with freeform metasurfaces for arbitrary polarization conversion[J]. Science Advances, 2020, 6(23): eaba3367.

    [25] Sell D, Yang J J, Doshay S, et al. Large-angle, multifunctional metagratings based on freeform multimode geometries[J]. Nano Letters, 2017, 17(6): 3752–3757.

    [27] Li YF,Ma H,Wang J F, et al. High-efficiency tri-band qua-si-continuous phase gradient metamaterials based on spoof surface plasmon polaritons[J]. Scientific Reports, 2017, 7: 40727.

    [28] Luo X G. Catenary Optics[M]. Singapore: Springer, 2019.

    [29] Zhang X H, Li X, Jin J J, et al. Polarization-independent broad-band meta-holograms via polarization-dependent nanoholes[J]. Nanoscale, 2018, 10(19): 9304–9310.

    [30] Khorasaninejad M, Chen WT, ZhuAY, et al. Multispectral Chiral Imaging with a metalens[J]. Nano Letters, 2016, 16(7): 4595–4600.

    [31] Zhang F, Pu M B, Luo J, et al. Symmetry breaking of photonic spin-orbit interactions in metasurfaces[J]. Opto-Electronic En-gineering, 2017, 44(3): 319–325.

    [32] Zhang F, Pu M B, Li X, et al. All-dielectric metasurfaces for simultaneous giant circular asymmetric transmission and wave-front shaping based on asymmetric photonic spin–orbit interac-tions[J]. Advanced Functional Materials, 2017, 27(47): 1704295.

    [34] Deng Z L, Deng J H, Zhuang X, et al. Diatomic metasurface for vectorial holography[J]. Nano Letters, 2018, 18(5): 2885–2892.

    [35] DengZL, Jin MK,Ye X, et al. Full-color complex-amplitude vectorial holograms based on multi-freedom metasurfaces[J]. Advanced Functional Materials, 2020, 30(21): 1910610.

    [36] Balthasar Mueller J P, Rubin N A, Devlin R C, et al. Metasurface polarization optics: independent phase control of arbitrary or-thogonal states of polarization[J]. Physical Review Letters, 2017, 118(11): 113901.

    [37] Devlin RC, AmbrosioA,RubinNA, et al.Arbitrary spin-to-orbital angular momentum conversion of light[J]. Science, 2017, 358(6365): 896–901.

    [38] Wu L, Tao J, Zheng G X. Controlling phase of arbitrary polariza-tions using both the geometric phase and the propagation phase[J]. Physical Review B, 2018, 97(24): 245426.

    [39] Li Z L, Chen C, Guan Z Q, et al. Three-channel metasurfaces for simultaneous meta-holography and meta-nanoprinting: a sin-gle-cell design approach[J]. Laser & Photonics Reviews, 2020, 14(6): 2000032.

    [40] Wang B, Dong F L, Feng H, et al. Rochon-prism-like planar circularly polarized beam splitters based on dielectric metasur-faces[J]. ACS Photonics, 2018, 5(5): 1660–1664.

    [41] Huo P C, Zhang C, Zhu W Q, et al. photonic spin-multiplexing metasurface for switchable spiral phase contrast imaging[J]. Nano Letters, 2020, 20(4): 2791–2798.

    [42] Fan QB,ZhuWQ, LiangYZ, et al. Broadband generation of photonic spin-controlled arbitrary accelerating light beams in the visible[J]. Nano Letters, 2019, 19(2): 1158–1165.

    [43] Zhang C, Divitt S, Fan Q B, et al. Low-loss metasurface optics down to the deep ultraviolet region[J]. Light: Science & Applica-tions, 2020, 9: 55.

    [44] Li S Q,Li X Y,WangG X, et al. Multidimensional manipulation of photonic spin hall effect with a single-layer dielectric metasur-face[J]. Advanced Optical Materials, 2019, 7(5): 1801365.

    [45] Arbabi A, Horie Y, Bagheri M, et al. Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission[J]. Nature Nanotech-nology, 2015, 10(11): 937–943.

    [46] Zhou H Q, Sain B, Wang Y T, et al. Polarization-encrypted orbital angular momentum multiplexed metasurface holography[J]. ACS Nano, 2020, 14(5): 5553–5559.

    [47] Zhao R Z, Sain B, Wei Q S, et al. Multichannel vectorial holo-graphic display and encryption[J]. Light: Science & Applications, 2018, 7: 95.

    [48] Zhang K, Yuan Y Y, Ding X M, et al. High-efficiency metalenses with switchable functionalities in microwave region[J]. ACS Ap-plied Materials & Interfaces, 2019, 11(31): 28423–28430.

    [49] Yuan Y Y, Sun S, Chen Y, et al. A fully phase-modulated meta-surface as an energy-controllable circular polarization router[J]. Advanced Science, 2020, 7(18): 2001437.

    [50] Yuan Y Y, Zhang K, Ratni B, et al. Independent phase modula-tion for quadruplex polarization channels enabled by chirali-ty-assisted geometric-phase metasurfaces[J]. Nature Commu-nications, 2020, 11(1): 4186.

    [52] Xu YH,Li Q,Zhang XQ, et al. Spin-decoupled multifunctional metasurface for asymmetric polarization generation[J]. ACS Photonics, 2019, 6(11): 2933–2941.

    [53] Gao Y J, Xiong X, Wang Z H, et al. Simultaneous generation of arbitrary assembly of polarization states with geometric-al-scaling-induced phase modulation[J]. Physical Review X, 2020, 10(3): 031035.

    [54] He Q, Zhang F, Pu M B, et al. Monolithic metasurface spatial differentiator enabled by asymmetric photonic spin-orbit interac-tions[J]. Nanophotonics, 2020, doi: 10.1515/nanoph-2020-0366.

    [55] Zhou J X, Qian H L, Chen C F, et al. Optical edge detection based on high-efficiency dielectric metasurface[J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(23): 11137–11140.

    [56] De Galarreta CR, AlexeevA M, Au YY, et al. Nonvolatile recon-figurable phase-change metadevices for beam steering in the near infrared[J]. Advanced Functional Materials, 2018, 28(10): 1704993.

    [57] Chu C H, Tseng M L, Chen J, et al. Active dielectric metasurface based on phase-change medium[J]. Laser & Photonics Reviews, 2016, 10(6): 986–994.

    [58] Chen Y G, Li X, Sonnefraud Y, et al. Engineering the phase front of light with phase-change material based planar lenses[J]. Scientific Reports, 2015, 5: 8660.

    [59] Choi C, Lee S Y, Mun S E, et al. Metasurface with nanostruc-tured Ge2Sb2Te5 as a platform for broadband-operating wave-front switch[J]. Advanced Optical Materials, 2019, 7(12): 1900171.

    [60] Li J X, Kamin S, Zheng G X, et al. Addressable metasurfaces for dynamic holography and optical information encryption[J]. Science Advances, 2018, 4(6): eaar6768.

    [61] Yin X H, Steinle T, Huang L L, et al. Beam switching and bifocal zoom lensing using active plasmonic metasurfaces[J]. Light: Science & Applications, 2017, 6(7): e17016.

    [62] Zhang M, Pu M B, Zhang F, et al. Plasmonic metasurfaces for switchable photonic spin–orbit interactions based on phase change materials[J]. Advanced Science, 2018, 5(10): 1800835.

    [63] Nemati A,WangQ, Hong MH, et al. Tunable and reconfigurable metasurfaces and metadevices[J]. Opto-Electronic Advances, 2018, 1(5): 180009.

    [64] Zhang F, Xie X, Pu M B, et al. Multistate switching of photonic angular momentum coupling in phase-change metadevices[J]. Advanced Materials, 2020, 32(39): 1908194.

    Zhang Fei, Guo Yinghui, Pu Mingbo, Li Xiong, Ma Xiaoliang, Luo Xiangang. Metasurfaces enabled by asymmetric photonic spin-orbit interactions[J]. Opto-Electronic Engineering, 2020, 47(10): 200366
    Download Citation