• Opto-Electronic Engineering
  • Vol. 47, Issue 10, 200366 (2020)
Zhang Fei1, Guo Yinghui1、2, Pu Mingbo1、2, Li Xiong1、2, Ma Xiaoliang1、2、3, and Luo Xiangang1、2、*
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • show less
    DOI: 10.12086/oee.2020.200366 Cite this Article
    Zhang Fei, Guo Yinghui, Pu Mingbo, Li Xiong, Ma Xiaoliang, Luo Xiangang. Metasurfaces enabled by asymmetric photonic spin-orbit interactions[J]. Opto-Electronic Engineering, 2020, 47(10): 200366 Copy Citation Text show less

    Abstract

    Photonic spin-orbit interaction is an important phenomenon ignored by classical optics. In recent years, studies have found that this phenomenon can be significantly enhanced by artificial subwavelength structures and adjusted on demand. Traditional metasurfaces only support symmetric photon spin-orbit interactions, and there are limitations in conjugate symmetry, which makes it difficult to use different spin states for multifunctional integration, complex optical field regulation, information encryption, and storage. The asymmetric photon spin-orbit interaction can decouple left and right circularly polarized light, which brings new opportunities for breaking the above-mentioned theoretical and application limitations. This article first introduces the principle and realization method of asymmetric photon spin-orbit interactions, secondly introduces the representative applications and characteristics of asymmetric photon-spin-orbit interactions, and finally outlines the challenges and prospects of asymmetric photon spin-orbit interactions for future research directions.
    Zhang Fei, Guo Yinghui, Pu Mingbo, Li Xiong, Ma Xiaoliang, Luo Xiangang. Metasurfaces enabled by asymmetric photonic spin-orbit interactions[J]. Opto-Electronic Engineering, 2020, 47(10): 200366
    Download Citation