• Journal of Inorganic Materials
  • Vol. 34, Issue 3, 260 (2019)
Jia-Jun SHEN, Teng FANG, Tie-Zheng FU, Jia-Zhan XIN, Xin-Bing ZHAO, Tie-Jun ZHU, [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], and [in Chinese]
Author Affiliations
  • State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
  • show less
    DOI: 10.15541/jim20180320 Cite this Article
    Jia-Jun SHEN, Teng FANG, Tie-Zheng FU, Jia-Zhan XIN, Xin-Bing ZHAO, Tie-Jun ZHU, [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese]. Lattice Thermal Conductivity in Thermoelectric Materials[J]. Journal of Inorganic Materials, 2019, 34(3): 260 Copy Citation Text show less
    References

    [1] E BELL L. Cooling, heating, generating power, and recovering waste heat with thermoelectric systems. Science, 321, 1457-1461(2008).

    [2] S TOBERER E, J SNYDER G. Complex thermoelectric materials. Nature Materials, 7, 101-110(2008).

    [3] L TANG Y, T LIU Y, Z XIN J et al. Valleytronics in thermoelectric materials. npj Quantum Materials, 3, 9(2018).

    [4] H GE B, Materials interstitial defects. Advanced, L ZHENG L, W LI et al, 29, 1605887-1-8(2017).

    [5] K BISWAS, D BLUM I, Q HE J et al. High-performance bulk thermoelectrics with all-scale hierarchical architectures. Nature, 489, 414-418(2012).

    [6] S ZHANG Y, D ZHAO L, H LO S et al. Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals. Nature, 508, 373-377(2014).

    [7] W CHEN Z, Z JIAN Z, W LI et al. Lattice dislocations enhancing thermoelectric PbTe in addition to band convergence. Advanced Materials, 29, 1606768-1-8(2017).

    [8] I KIM S, H LEE K, A MUN H et al. Dense dislocation arrays embedded in grain boundaries for high-performance bulk thermoelectrics. Science, 348, 109-114(2015).

    [9] Y ZHANG X, Y Z PEI, W CHEN Z. Manipulation of phonon transport in thermoelectrics. Advanced Materials, 30, 1705617-1-12(2018).

    [10] T DAY, S ZHANG T, Y HE et al. High thermoelectric performance in non-toxic earth-abundant copper sulfide. Advanced Materials, 26, 3974-3978(2014).

    [11] X SHI, L LIU H, F XU F et al. Copper ion liquid-like thermoelectrics. Nature Materials, 11, 422-425(2012).

    [12] B VINING C, W LASKOW, O HANSON J et al. Thermoelectric properties of pressure-sintered Si0.8Ge0.2 thermoelectric alloys. Journal of Applied Physics, 69, 4333-4340(1991).

    [13] S IWANAGA, Z PEI Y, A LALONDE et al. High thermoelectric figure of merit in heavy hole dominated PbTe. Energy & Environmental Science, 4, 2085-2089(2011).

    [14] G ZEIER W, A ZEVALKINK, S TOBERER E et al. Ca3AlSb3: an inexpensive, non-toxic thermoelectric material for waste heat recovery. Energy & Environmental Science, 4, 510-518(2011).

    [15] F MAY A, A SARAMAT, S TOBERER E et al. Characterization and analysis of thermoelectric transport in n-type Ba8Ga16-xGe30+x. Physical Review B, 80, 125205-1-12(2009).

    [16] S TOBERER E, A COX C, A LEVCHENKO A et al. Structure, heat capacity, and high-temperature thermal properties of Yb14Mn1-xAlxSb11. Chemistry of Materials, 21, 1354-1360(2009).

    [17] A SLACK G. The thermal conductivity of nonmetallic crystals. Solid State Physics, 34, 1-71(1979).

    [18] S TOBERER E, J SNYDER G, A ZEVALKINK. Phonon engineering through crystal chemistry. Journal of Materials Chemistry, 21, 15843-15852(2011).

    [19] J HU Y, A FIRDOSY S, Y WANG et al. First-principles calculations of lattice dynamics and thermodynamic properties for Yb14MnSb11. Journal of Applied Physics, 123, 045102-1-10(2018).

    [20] R BROWN S, M KAUZLARICH S, F GASCOIN et al. Yb14MnSb11: new high efficiency thermoelectric material for power generation. Chemistry of Materials, 18, 1873-1877(2006).

    [21] Z CHEN, C LI D, P DENG S et al. Thermoelectric properties and thermal stability of Bi-doped PbTe single crystal. Physica B: Condensed Matter, 538, 154-159(2018).

    [22] C WANG Y, J YING P, X LI et al. Hierarchical chemical bonds contributing to the intrinsically low thermal conductivity in α-MgAgSb thermoelectric materials. Advanced Functional Materials, 27, 1604145-1-8(2016).

    [23] H SONG S, Q LI J, F LI L et al. High thermoelectric performance of GeTe-Ag8GeTe6 eutectic composites. Journal of Alloys and Compounds, 565, 144-147(2013).

    [24] M FUJIKANE, H MUTA, K KUROSAKI et al. Thermoelectric properties of Ag8GeTe6. Journal of Alloys and Compounds, 396, 280-282(2005).

    [25] S CHANG L, H HOU Y. Optimization on the figure-of-merit of p-type Ba8Ga16Ge30 type-I clathrate grown via the Bridgman method by fine tuning Ga/Ge ratio. Journal of Alloys and Compounds, 736, 108-114(2018).

    [26] L ZHANG, M IKEDA, L YAN X et al. Suppression of vacancies boosts thermoelectric performance in type-I clathrates. Journal of Materials Chemistry A, 6, 1727-1735(2018).

    [27] A VANDERGRAAFF, M BEEKMAN. High-temperature thermal conductivity of thermoelectric clathrates. Journal of Applied Physics, 121, 205105(2017).

    [28] L GONZALEZ-ROMERO R, A ANTONELLI. Estimating carrier relaxation times in the Ba8Ga16Ge30 clathrate in the extrinsic regime. Physical Chemistry Chemical Physics, 19, 3010-3018(2017).

    [29] B ABRAHAMSEN A, M CHRISTENSEN, B CHRISTENSEN N et al. Avoided crossing of rattler modes in thermoelectric materials. Nature Materials, 7, 811-815(2008).

    [30] J CALLAWAY. Model for lattice thermal conductivity at low temperatures. Physical Review, 113, 1046-1051(1959).

    [31] D CHUNG J, A J H MCGAUGHEY, M KAVIANY. Role of phonon dispersion in lattice thermal conductivity modeling. Journal of Heat Transfer, 126, 376-380(2004).

    [32] S GALGINAITIS, A SLACK G. Thermal conductivity and phonon scattering by magnetic impurities in CdTe. Physical Review, 133, A253-A268(1964).

    [33] P HEREMANS J. Thermoelectric materials: the anharmonicity blacksmith. Nature Physics, 11, 990-991(2015).

    [34] L XI L, J QIU W, P WEI et al. Part-crystalline part-liquid state and rattling-like thermal damping in materials with chemical-bond hierarchy. Proceedings of the National Academy of Sciences, 111, 15031-15035(2014).

    [35] K TYAGI, S BATHULA, B GAHTORI et al. Thermoelectric properties of Cu3SbSe3 with intrinsically ultralow lattice thermal conductivity. Journal of Materials Chemistry A, 2, 15829-15835(2014).

    [36] O DELAIRE, K MARTY, J MA et al. Giant anharmonic phonon scattering in PbTe. Nature Materials, 10, 614-619(2011).

    [37] F LUO T, K ESFARJANI, S LEE et al. Resonant bonding leads to low lattice thermal conductivity. Nature Communications, 5, 3525-1-8(2014).

    [38] M MURPHY R, ÉD MURRAY, S FAHY et al. Ferroelectric phase transition and the lattice thermal conductivity of Pb1-xGexTe alloys. Physical Review B, 95, 144302-1-8(2017).

    [39] B HE, Y CHEN, J ZHU T et al. Thermoelectric properties of non-stoichiometric AgSbTe2 based alloys with a small amount of GeTe addition. Journal of Physics D: Applied Physics, 45, 115302(2012).

    [40] F CHEN C, Z KE X, Y ZHANG et al. Thermodynamic properties of PbTe, PbSe,PbS: first-principles study. Physical Review B, 80, 024304-1-12(2009).

    [41] J MILLER A, A SAUNDERS G, K YOGURTCU Y. Pressure dependences of the elastic constants of PbTe, SnTe and Ge0.08Sn0.92Te. Journal of Physics C: Solid State Physics, 14, 1569-1584(1981).

    [42] Z ALEXANDER F, S RALF P, D VOLKER L et al. Ab initio lattice dynamics and thermochemistry of layered bismuth telluride (Bi2Te3). Journal of Physics: Condensed Matter, 28, 115401-1-7(2016).

    [43] C RINCÓN, M WASIM S, L VALERI-GIL M. Room-temperature thermal conductivity and grüneisen parameter of the I-III-VI2 chalcopyrite compounds. Physica Status Solidi (A), 147, 409-415(1995).

    [44] F WANG H, G CHU W, H JIN et al. Thermodynamic properties of Mg2Si and Mg2Ge investigated by first principles method. Journal of Alloys and Compounds, 499, 68-74(2010).

    [45] L FELDMAN J, N BERNSTEIN, D J SINGH. Calculations of dynamical properties of skutterudites: thermal conductivity, thermal expansivity,atomic mean-square displacement. Physical Review B, 81, 134301-1-11(2010).

    [46] M WU W, H PAI Y, A BHASKAR et al. Low thermal conductivity and enhanced thermoelectric performance of nanostructured Al-doped ZnTe. Ceramics International, 42, 1070-1076(2016).

    [47] I TANAKA, A KATRE, A TOGO et al. First principles study of thermal conductivity cross-over in nanostructured zinc-chalcogenides. Journal of Applied Physics, 117, 045102-1-6(2015).

    [48] O A C NUNES. Piezoelectric surface acoustical phonon amplification in graphene on a GaAs substrate. Journal of Applied Physics, 115, 233715-1-7(2014).

    [49] R REEBER R. Thermal expansion of some group IV elements and ZnS. Physica Status Solidi (a), 32, 321-331(1975).

    [50] L TEO K, L QIN, X SHEN Z et al. Raman scattering of Ge/Si dot superlattices under hydrostatic pressure. Physical Review B, 64, 075312-1-5(2001).

    [51] Y OHISHI, K KUROSAKI, W SILPAWILAWAN et al. FeNbSb p-type half-Heusler compound: beneficial thermomechanical properties and high-temperature stability for thermoelectrics. Journal of Materials Chemistry C, 5, 6677-6681(2017).

    [52] M BERNASCONI, E BOSONI, C SOSSO G. Grüneisen parameters and thermal conductivity in the phase change compound GeTe. Journal of Computational Electronics, 16, 997-1002(2017).

    [53] B GE, W LI, S LIN et al. Low sound velocity contributing to the high thermoelectric performance of Ag8SnSe6. Advanced Science, 3, 1600196-1-7(2016).

    [54] B VON, C HANS, J CALLAWAY. Effect of point imperfections on lattice thermal conductivity. Physical Review, 120, 1149-1154(1960).

    [55] F HAO, F QIU P, S TANG Y et al. High efficiency Bi2Te3-based materials and devices for thermoelectric power generation between 100 and 300 ℃. Energy & Environmental Science, 9, 3120-3127(2016).

    [56] J ZHU T, H LIU X, P HU L et al. Point defect engineering of high-performance bismuth-telluride-based thermoelectric materials. Advanced Functional Materials, 24, 5211-5218(2014).

    [57] Z PEI Y, A LALONDA, Y SHI X et al. Convergence of electronic bands for high performance bulk thermoelectrics. Nature, 473, 66-69(2011).

    [58] T QIN Y, X SHI, F QIU P et al. Thermoelectric properties for CuInTe2-xSx(x = 0, 0.05, 0.1, 0.15) solid solution. Journal of Inorganic Materials, 32, 1171-1176(2017).

    [59] J HE, J ZHU T, Y JIANG G et al. High performance Mg2(Si,Sn) solid solutions: a point defect chemistry approach to enhancing thermoelectric properties. Advanced Functional Materials, 24, 3776-3781(2014).

    [60] J ZHU T, H LIU X, H WANG et al. Low electron scattering potentials in high performance Mg2Si0.45Sn0.55 based thermoelectric solid solutions with band convergence. Advanced Energy Materials, 3, 1238-1244(2013).

    [61] N TRIPATHI M, M BHANDARI C. High-temperature thermoelectric performance of Si-Ge alloys. Journal of Physics: Condensed Matter, 15, 5359-5370(2003).

    [62] G FU C, Z PEI Y, J ZHU T et al. High band degeneracy contributes to high thermoelectric performance in p-type half-Heusler compounds. Advanced Energy Materials, 4, 1400600-1-6(2014).

    [63] Y XIA K, J YU J, B ZHAO X et al. High performance p-type half-Heusler thermoelectric materials. Journal of Physics D: Applied Physics, 51, 113001(2018).

    [64] J SHEN J, T LIU Y, G FU C et al. Enhancing thermoelectric performance of FeNbSb half-Heusler compound by Hf-Ti dual-doping. Energy Storage Materials, 10, 69-74(2018).

    [65] J ZHU T, G FU C, T LIU Y et al. Compromise and synergy in high-efficiency thermoelectric materials. Advanced Materials, 29, 1605884-1-26(2017).

    [66] T LIU Y, G FU C, J WU H et al. Enhancing the figure of merit of heavy-band thermoelectric materials through hierarchical phonon scattering. Advanced Science, 3, 1600035-1-6(2016).

    [67] H XIE H, J ZHU T, G FU C et al. High efficiency half-Heusler thermoelectric materials for energy harvesting. Advanced Energy Materials, 5, 1500588-1-7(2015).

    [68] T LIU Y, Q BAI S, G FU C et al. Realizing high figure of merit in heavy-band p-type half-Heusler thermoelectric materials. Nat. Commun., 6, 8144(2015).

    [69] Z PEI Y, H XIE H, H WANG et al. Beneficial contribution of alloy disorder to electron and phonon transport in half-heusler thermoelectric materials. Advanced Functional Materials, 23, 5123-5130(2013).

    [70] J YU J, T LIU Y, G FU C et al. Unique role of refractory ta alloying in enhancing the figure of merit of NbFeSb thermoelectric materials. Advanced Energy Materials, 8, 1701313-1-8(2018).

    [71] T LIU Y, Y XIA K, S ANAND et al. Enhanced thermoelectric performance in 18-electron Nb0.8CoSb half-heusler compound with intrinsic Nb vacancies. Advanced Functional Materials, 28, 1705845-1-7(2018).

    [72] W LI, Q LIN S, Y ZHANG X et al. Thermoelectric properties of Cu2SnSe4 with intrinsic vacancy. Chemistry of Materials, 28, 6227-6232(2016).

    [73] G KLEMENS P. The scattering of low-frequency lattice waves by static imperfections. Proceedings of the Physical Society. Section A, 68, 1113-1128(1955).

    [74] H JI X, J HE, N ZHANG S et al. Effects of ball-milling atmosphere on the thermoelectric properties of TAGS-85 compounds. Journal of Electronic Materials, 38, 1142-1147(2009).

    [75] H WANG, Y LI, Q MEI D et al. Reduced lattice thermal conductivity in nanograined Na-doped PbTe alloys by ball milling and semisolid powder processing. Materials Letters, 140, 103-106(2015).

    [76] M HONG, J ZOU, G CHEN Z. Fundamental and progress of Bi2Te3-based thermoelectric materials. Chinese Physics B, 27, 048403-1-46(2018).

    [77] S ICHIKAWA, J XIE, Y OHISHI et al. Naturally decorated dislocations capable of enhancing multiple-phonon scattering in Si-based thermoelectric composites. Journal of Applied Physics, 123, 115114-1-8(2018).

    [78] Y YU, S HE D, Y ZHANG S et al. Simultaneous optimization of electrical and thermal transport properties of Bi0.5Sb1.5Te3 thermoelectric alloy by twin boundary engineering. Nano Energy, 37, 203-213(2017).

    [79] J KANG H, J HE, J XIE W et al. Identifying the specific nanostructures responsible for the high thermoelectric performance of (Bi,Sb)2Te3 nanocomposites. Nano Letters, 10, 3283-3289(2010).

    [80] H WU J, D REN D, Y YANG X et al. Microstructure and thermoelectric properties of p-type Si80Ge20B0.6-SiC nanocomposite. Journal of Inorganic Materials, 31, 997-1003(2016).

    [81] H XIE H, G FU C, C YU et al. High performance half-Heusler thermoelectric materials with refined grains and nanoscale precipitates. Journal of Materials Research, 27, 2457-2465(2012).

    [82] J WU H, P HU L, J ZHU T et al. Tuning multiscale microstructures to enhance thermoelectric performance of n-type bismuth-telluride-based solid solutions. Advanced Energy Materials, 5, 1500411-1-13(2015).

    [83] Q HE J, N GIRARD S, G KANATZIDIS M et al. Microstructure-lattice thermal conductivity correlation in nanostructured PbTe0.7S0.3 thermoelectric materials. Advanced Functional Materials, 20, 764-772(2010).

    [84] Z XIN J, H LIU X, J WU H et al. Mg vacancy and dislocation strains as strong phonon scatterers in Mg2Si1-xSbx thermoelectric materials. Nano Energy, 34, 428-436(2017).

    [85] Q BAI S, L XI L, X SHI et al. Realization of high thermoelectric performance in n-type partially filled skutterudites. Journal of Materials Research, 26, 1745-1754(2011).

    [86] C SALES B, D MANDRUS, V KEPPENS et al. Localized vibrational modes in metallic solids. Nature, 395, 876-878(1998).

    [87] R SALVADOR J, J YANG, B DUAN et al. Electronegative guests in CoSb3. Energy & Environmental Science, 9, 2090-2098(2016).

    [88] M SAMANTA, K PAL, P PAL et al. Localized vibrations of bi bilayer leading to ultralow lattice thermal conductivity and high thermoelectric performance in weak topological insulator n-type BiSe. Journal of the American Chemical Society, 140, 5866-5872(2018).

    [89] J YANG, S HU, C UHER et al. Transport properties of pure and doped MNiSn (M=Zr, Hf). Physical Review B, 59, 8615-8621(1999).

    [90] F LI J, S LIU W, D ZHAO L et al. High-performance nanostructured thermoelectric materials. NPG Asia Materials, 2, 152-158(2010).

    [91] B ZHAO X, J ZHU T, T FANG. Band Structures and transport properties of high-performance half-heusler thermoelectric materials by first principles. Materials, 11, 847(2018).

    [92] S LI X, L TANG Y. MARTIN L H J, et al. Impact of Ni content on the thermoelectric properties of half-Heusler TiNiSn. Energy & Environmental Science, 11, 311-320(2018).

    [93] J XU, J ZHU T, T YU G et al. The role of electron-phonon interaction in heavily doped fine-grained bulk silicons as thermoelectric materials. Advanced Electronic Materials, 2, 1600171(2016).

    [94] B ABELES. Lattice thermal conductivity of disordered semiconductor alloys at high temperatures. Physical Review, 131, 1906-1911(1963).

    [95] R CLARKE D. Materials selection guidelines for low thermal conductivity thermal barrier coatings. Surface and Coatings Technology, 163, 67-74(2003).

    [96] O POHL R, G CAHILL D. Heat flow and lattice vibrations in glasses. Solid State Communications, 70, 927-930(1989).

    [97] G CAHILL D, O POHL R, K WATSON S. Lower limit to the thermal conductivity of disordered crystals. Physical Review B, 46, 6131-6140(1992).

    [98] L MIHALY, Q DU X, B ALLEN P et al. Thermal conductiity of insulating Bi2Sr2YCu2O8 and superconducting Bi2Sr2CaCu2O8: failure of the phonon-gas picture. Physical Rview B, 49, 9073-9079(1994).

    [99] L FELDMAN J, B ALLEN P, R BICKHAM S. Numerical study of low-frequency vibrations in amorphous silicon. Physical Review B, 59, 3551-3559(1999).

    [100] T AGNE M, J SNYDER G, R HANUS. Minimum thermal conductivity in the context of diffuson-mediated thermal transport. Energy & Environmental Science, 11, 609-616(2018).

    [101] O POHL R. Lattice vibrations of glasses. Journal of. Non-Crystalline Solids, 352, 3363-3367(2006).

    [102] G FU C, T LIU Y, J ZHU T et al. Band engineering of high performance p-type FeNbSb based half-Heusler thermoelectric materials for figure of merit zT>1. Energy & Environmental Science, 8, 216-220(2015).

    [103] P WEI, J YANG, L GUO et al. Minimum thermal conductivity in weak topological insulators with bismuth-based stack structure. Advanced Functional Materials, 26, 5360-5367(2016).

    [104] B RASCHE, A ISAEVA, M RUCK et al. Stacked topological insulator built from bismuth-based graphene sheet analogues. Nature Materials, 12, 422-425(2013).

    [105] K KOEPERNIK, B RASCHE, C PAULY et al. Subnanometre-wide electron channels protected by topology. Nature Physics, 11, 338-343(2015).

    Jia-Jun SHEN, Teng FANG, Tie-Zheng FU, Jia-Zhan XIN, Xin-Bing ZHAO, Tie-Jun ZHU, [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese]. Lattice Thermal Conductivity in Thermoelectric Materials[J]. Journal of Inorganic Materials, 2019, 34(3): 260
    Download Citation