• Acta Optica Sinica
  • Vol. 45, Issue 8, 0806007 (2025)
Maonao Wu1,2, Jianping Li1,2,*, Jianbo Zhang1,2, and Yuwen Qin1,2
Author Affiliations
  • 1Institute of Advanced Photonics Technology, School of Information Engineering, Guangdong University of Technology, Guangzhou 510006, Guangdong, China
  • 2Key Laboratory of Photonic Technology for Integrated Sensing and Communication, Ministry of Education, Guangdong Provincial Key Laboratory of Information Photonics Technology, Guangdong University of Technology, Guangzhou 510006, Guangdong, China
  • show less
    DOI: 10.3788/AOS250496 Cite this Article Set citation alerts
    Maonao Wu, Jianping Li, Jianbo Zhang, Yuwen Qin. Terabit Digital-Analog Radio-over-Fiber System Based on Intensity Modulation and Direct Detection[J]. Acta Optica Sinica, 2025, 45(8): 0806007 Copy Citation Text show less
    References

    [1] Peng M G, Wang C G, Lau V et al. Fronthaul-constrained cloud radio access networks: insights and challenges[J]. IEEE Wireless Communications, 22, 152-160(2015).

    [2] Liu X. Enabling optical network technologies for 5G and beyond[J]. Journal of Lightwave Technology, 40, 358-367(2022).

    [3] Zhang Z S, Tian L, Sun Q et al. Statistical multiplexing gain analysis based on resource utilization for practical C-RAN[C], 250-255(2022).

    [4] Pizzinat A, Chanclou P, Saliou F et al. Things you should know about fronthaul[J]. Journal of Lightwave Technology, 33, 1077-1083(2015).

    [5] Guo B R, Ye C L, Yu H et al. Implementation of C-RAN architecture with CU/DU split on a flexible SDR testbed[C]. Morocco, 15-18(2019).

    [6] Chen S Z, Liang Y C, Sun S H et al. Vision, requirements, and technology trend of 6G: how to tackle the challenges of system coverage, capacity, user data-rate and movement speed[J]. IEEE Wireless Communications, 27, 218-228(2020).

    [7] Zhou W, Xu S C. An overview of key machine learning technologies in 6G-oriented terahertz wireless communication systems (invited)[J]. Laser & Optoelectronics Progress, 61, 0306001(2024).

    [8] Zhang C B, Zhu Y X, Lin J J et al. High-fidelity sub-petabit-per-second self-homodyne fronthaul using broadband electro-optic combs[J]. Nature Communications, 15, 6621(2024).

    [9] Dixit A. Architectures and algorithms for radio-over-fiber networks[J]. Journal of Optical Communications and Networking, 10, 535-544(2018).

    [10] Dat P T, Kanno A, Umezawa T et al. Millimeter- and terahertz-wave radio-over-fiber for 5G and beyond[C], 165-166(2017).

    [11] Liu A L, Yin H X, Wu B et al. Phase-shift characteristics of radio frequency signals for radio over fiber transmission systems[J]. Acta Optica Sinica, 38, 0506003(2018).

    [12] Wei Y, Wang K H, Zhang Y et al. Real-time transmission of 125.52 Gbit/s PDM-QPSK signal in radio-over-fiber system[J]. Acta Optica Sinica, 42, 1506003(2022).

    [13] Lu Z X, Li P L, Wang H R. Multi-service layered WDM-ROF system with optional frequency millimeter wave based on optical frequency comb[J]. Chinese Journal of Lasers, 50, 1006002(2023).

    [14] Xu M, Lu F, Wang J et al. Key technologies for next-generation digital RoF mobile fronthaul with statistical data compression and multiband modulation[J]. Journal of Lightwave Technology, 35, 3671-3679(2017).

    [15] Wake D, Nkansah A, Gomes N J. Radio over fiber link design for next generation wireless systems[J]. Journal of Lightwave Technology, 28, 2456-2464(2010).

    [16] Nirmalathas A, Gamage P A, Lim C et al. Digitized radio-over-fiber technologies for converged optical wireless access network[J]. Journal of Lightwave Technology, 28, 2366-2375(2010).

    [17] Rommel S, Dodane D, Grivas E et al. Towards a scaleable 5G fronthaul: analog radio-over-fiber and space division multiplexing[J]. Journal of Lightwave Technology, 38, 5412-5422(2020).

    [19] Ji H L, Sun C, Shieh W. Spectral efficiency comparison between analog and digital RoF for mobile fronthaul transmission link[J]. Journal of Lightwave Technology, 38, 5617-5623(2020).

    [20] Liu X. Hybrid digital-analog radio-over-fiber (DA-RoF) modulation and demodulation achieving a SNR gain over analog RoF of >10 dB at halved spectral efficiency[C], Tu5D.4(2021).

    [21] Zhu Y X, Xu Y C, Hu W S et al. Cascaded digital‒analog radio-over-fiber for efficient SNR scaling at >10 dB per extra bandwidth[J]. Optics Letters, 47, 3836-3839(2022).

    [22] Zhang C B, Zhu Y X, He B B et al. Clone-comb-enabled high-capacity digital-analogue fronthaul with high-order modulation formats[J]. Nature Photonics, 17, 1000-1008(2023).

    [23] Zhang C B, Zhu Y X, He B B et al. 14.1Tb/s CPRI-equivalent rate 1024-QAM transmission via combs-cloned self-homodyne WDM digital-analog radio-over-fiber system[C], Tu2J.2-9(2023).

    [24] Zhang Y K, Zhu Y X, Yan Z J et al. Computationally efficient composite triple beat cancellation for DML-based DA-RoF fronthaul[J]. Optics Letters, 48, 6152-6155(2023).

    Maonao Wu, Jianping Li, Jianbo Zhang, Yuwen Qin. Terabit Digital-Analog Radio-over-Fiber System Based on Intensity Modulation and Direct Detection[J]. Acta Optica Sinica, 2025, 45(8): 0806007
    Download Citation