• Chinese Journal of Quantum Electronics
  • Vol. 41, Issue 1, 87 (2024)
CAI Zhendi1、2、*, SUN Huanyao1, and CHEN Qunfeng1
Author Affiliations
  • 1Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
  • 2University of Chinese Academy of Sciences, Beijing 100049, China
  • show less
    DOI: 10.3969/j.issn.1007-5461.2024.01.008 Cite this Article
    Zhendi CAI, Huanyao SUN, Qunfeng CHEN. A 10 MHz hydrogen clock signal transferring system[J]. Chinese Journal of Quantum Electronics, 2024, 41(1): 87 Copy Citation Text show less
    References

    [1] Dong S W. Study on Several Important Technical Issues in Time-keeping[D](2007).

    [2] Microsemi. MHM-2020 active hydrogen maser[OL]. https://www.microsemi.com/document-portal/doc_view/1244235-microchip-mhm-2020-maser-data-sheet

    [3] Yang W K. The Study of Phase Noise Analysis and Identification[D](2008).

    [4] Fujieda M, Gotoh T, Nakagawa F et al. Carrier-phase-based two-way satellite time and frequency transfer[J]. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 59, 2625-2630(2012).

    [5] Williams P A, Swann W C, Newbury N R. High-stability transfer of an optical frequency over long fiber-optic links[J]. Journal of the Optical Society of America B, 25, 1284-1293(2008).

    [6] Droste S, Ozimek F, Udem T et al. Optical-frequency transfer over a single-span 1840 km fiber link[J]. Physical Review Letters, 111, 110801(2013).

    [7] Schioppo M, Kronjäger J, Silva A et al. Comparing ultrastable lasers at 7 × 10–17 fractional frequency instability through a 2220 km optical fibre network[J]. Nature Communications, 13, 212(2022).

    [8] Lopez O, Amy-Klein A, Daussy C et al. 86-km optical link with a resolution of 2 × 10-18 for RF frequency transfer[J]. The European Physical Journal D, 48, 35-41(2008).

    [9] Marra G, Margolis H S, Lea S N et al. High-stability microwave frequency transfer by propagation of an optical frequency comb over 50 km of optical fiber[J]. Optics Letters, 35, 1025-1027(2010).

    [10] Wang B, Gao C, Chen W L et al. Precise and continuous time and frequency synchronisation at the 5 × 10-19 accuracy level[J]. Scientific Reports, 2, 556(2012).

    [11] Xue W X, Zhao W Y, Quan H L et al. Microwave frequency transfer over a 112-km urban fiber link based on electronic phase compensation[J]. Chinese Physics B, 29, 064209(2020).

    [12] Zhao C C, Zhao W Y, Xue W X et al. Microwave frequency dissemination via 50 km optical fiber based on optical delay compensation[J]. Acta Photonica Sinica, 49, 0806002(2020).

    [13] Quan H L, Zhao W Y, Xue W X et al. High-resolution microwave frequency dissemination via 56 km optical fiber based on microwave phase compensation[J]. Acta Photonica Sinica, 50, 0406003(2021).

    [14] Wang J, Yue C, Xi Y et al. Fiber-optic joint time and frequency transfer with the same wavelength[J]. Optics Letters, 45, 208-211(2019).

    [15] Lu Z, Gui Y Z, Wang J J et al. Fiber-optic time-frequency transfer in gigabit ethernet networks over urban fiber links[J]. Optics Express, 29, 11693-11701(2021).

    [16] Zhang Z R, Wang Y F, Qu M X et al. Analysis of phase noise in digital phase-locked loop[J]. Electric Drive, 51, 15-19(2021).

    [17] Ma L S, Jungner P, Ye J et al. Delivering the same optical frequency at two places: Accurate cancellation of phase noise introduced by an optical fiber or other time-varying path[J]. Optics Letters, 19, 1777-1779(1994).

    [18] Yao B W, Sun H Y, Chen Q F. Terminal noise filtration of hydrogen clock signal after transmission[J]. Chinese Journal of Quantum Electronics, 36, 709-713(2019).

    Zhendi CAI, Huanyao SUN, Qunfeng CHEN. A 10 MHz hydrogen clock signal transferring system[J]. Chinese Journal of Quantum Electronics, 2024, 41(1): 87
    Download Citation