• Acta Physica Sinica
  • Vol. 68, Issue 9, 098501-1 (2019)
Yi-Hao Chen1, Wei Xu1, Yu-Qi Wang1, Xiang Wan1, Yue-Feng Li1, Ding-Kang Liang1, Li-Qun Lu1, Xin-Wei Liu1, Xiao-Juan Lian1, Er-Tao Hu1, Yu-Feng Guo1, Jian-Guang Xu2, Yi Tong1、*, and Jian Xiao1、*
Author Affiliations
  • 1College of Electronic and Optical Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
  • 2School of Materials Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China
  • show less
    DOI: 10.7498/aps.68.20182306 Cite this Article
    Yi-Hao Chen, Wei Xu, Yu-Qi Wang, Xiang Wan, Yue-Feng Li, Ding-Kang Liang, Li-Qun Lu, Xin-Wei Liu, Xiao-Juan Lian, Er-Tao Hu, Yu-Feng Guo, Jian-Guang Xu, Yi Tong, Jian Xiao. Fabrication of synaptic memristor based on two-dimensional material MXene and realization of both long-term and short-term plasticity[J]. Acta Physica Sinica, 2019, 68(9): 098501-1 Copy Citation Text show less

    Abstract

    Compared with conventional computation relying on the von Neumann architecture, brain-inspired computing has shown superior strength in various cognitive tasks. It has been generally accepted that information in the brain is represented and formed by vastly interconnected synapses. So the physical implementation of electronic synaptic devices is crucial to the development of brain-based computing systems. Among a large number of electronic synaptic devices, the memristors have attracted significant attention due to its simple structure and similarities to biological synapses. In this work, we first use two-dimensional material MXene as a resistive material and fabricate an electronic synapse based on a Cu/MXene/SiO2/W memristor. By using the unique properties of MXene, the conductance of the memristor can be modulated by the accumulation or reflux of Cu2+ at the physical switching layer, which can vividly simulate the mechanism of bio-synapses. Experimental results show that the Cu/MXene/SiO2/W memristor not only achieves stable bipolar analog resistance switching but also shows excellent long-term and short-term synaptic behaviors, including paired-pulse facilitation (PPF) and long-term potential/depression. By adjusting the pulse interval, the PPF index will change accordingly. In a biological system, the short-term plasticity is considered to be the key point for performing computational functions while the long-term plasticity is believed to underpin learning and memory functions. This work indicates that Cu/MXene/SiO2/W memristor with both long-term and short-term plasticity will have great application prospects for brain-inspired intelligence in the future.
    Yi-Hao Chen, Wei Xu, Yu-Qi Wang, Xiang Wan, Yue-Feng Li, Ding-Kang Liang, Li-Qun Lu, Xin-Wei Liu, Xiao-Juan Lian, Er-Tao Hu, Yu-Feng Guo, Jian-Guang Xu, Yi Tong, Jian Xiao. Fabrication of synaptic memristor based on two-dimensional material MXene and realization of both long-term and short-term plasticity[J]. Acta Physica Sinica, 2019, 68(9): 098501-1
    Download Citation