• Opto-Electronic Engineering
  • Vol. 47, Issue 8, 200205 (2020)
Li Ming1、2、*, Wu Jieli3, Wu Yongqian3, Xu Yan3, Zhang Dongni1、2, Hong Zhen1, Yang Fugui1, and Wan Yongjian3
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • show less
    DOI: 10.12086/oee.2020.200205 Cite this Article
    Li Ming, Wu Jieli, Wu Yongqian, Xu Yan, Zhang Dongni, Hong Zhen, Yang Fugui, Wan Yongjian. A review on the fabrication technology of X-ray reflector[J]. Opto-Electronic Engineering, 2020, 47(8): 200205 Copy Citation Text show less
    References

    [1] Codling K. Applications of synchrotron radiation (ultraviolet spectral light source)[J]. Reports on Progress in Physics, 1973, 36(5): 541–624.

    [3] Winick H. Synchrotron radiation sources – present capabilities and future directions[J]. Journal of Synchrotron Radiation, 1998, 5(3): 168–175.

    [4] Susini J, Pauschinger D, Geyl R, et al. Hard x-ray mirror fabri-cation capabilities in Europe[J]. Optical Engineering, 1995, 34(2): 388–395.

    [5] Makeev M A, Cuerno R, Barabási A L. Morphology of ion-sputtered surfaces[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2002, 197(3–4): 185–227.

    [6] Schindler A, Haensel T, Flamm D, et al. Ion beam and plasma jet etching for optical component fabrication[J]. Proceedings of SPIE, 2001, 4440: 217–227.

    [7] Li A G, Takino H, Frost F. Ion beam planarization of diamond turned surfaces with various roughness profiles[J]. Optics Ex-press, 2017, 25(7): 7828–7838.

    [8] Zhou L,Li S Y, Liao WL, et al. Ion beam technology : figuring, smoothing and adding for high-precision optics[C]//Proceedings of Optical Fabrication and Testing 2014, Kohala Coast, Hawaii, 2014: 4–6.

    [9] Mori Y, Yamauchi K, Hirose K, et al. Numerically controlled EEM (Elastic Emission Machining) system for ultraprecision figuring and smoothing of aspherical surfaces[M]//Scheel H J, Fukuda T. Crystal Growth Technology. Norwich: John Wiley & Sons, Ltd, 2013: 2.

    [10] https: //www.j-tec.co.jp/english/optical/high-precision-x-ray-mirro r/.

    [11] Mori Y, Yamauchi K, Yamamura K, et al. Development of plas-ma chemical vaporization machining[J]. Review of Scientific In-struments, 2000, 71(12): 4627–4632.

    [12] Takino H, Shibata N, Itoh H, et al. Computer numerically con-trolled plasma chemical vaporization machining with a pipe electrode for optical fabrication[J]. Applied Optics, 1998, 37(22): 5198–5210.

    [13] Yamauchi K, Yamamura K, Mimura H, et al. Fabrication tech-nology of ultraprecise mirror optics to realize hard X-ray nano-beam[J]. Proceedings of SPIE, 2004, 5533: 116–123.

    [14] https: //www.j-tec.co.jp/english/optical/high-precision-x-ray-mirro r/.

    [15] Arima K, Hara H, Murata J, et al. Atomic-scale flattening of SiC surfaces by electroless chemical etching in HF solution with Pt catalyst[J]. Applied Physics Letters, 2007, 90(20): 202106.

    [16] Kuwahara Y, Saito A, Arima K, et al. Center of excellence for atomically controlled fabrication technology[J]. Journal of Na-noscience and Nanotechnology, 2011, 11(4): 2763–2776.

    [17] Qian J, Manton J, Bean S, et al. Metrology of varia-ble-line-spacing x-ray gratings using the APS Long Trace Pro-filer[C]// Society of Photo-optical Instrumentation Engineers. Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, 2017.

    [18] Sheung J, Qian J, Sullivan J, et al. Metrology of varia-ble-line-spacing x-ray gratings using the APS Long Trace Pro-filer[J]. Proceedings of SPIE, 2017, 10385: 1038508.

    [19] Senba Y, Kishimoto H, Ohashi H, et al. Upgrade of long trace profiler for characteriza-tion of high-precision X-ray mirrors at SPring-8[J]. Nuclear Instruments & Methods in Physics Re-search, 2010, 616(2–3): 237–240.

    [20] Siewert F, Buchheim J, Zeschke T, et al. On the characteriza-tion of ultra-precise X-ray optical components: advances and challenges in ex situ metrology[J]. Journal of Synchrotron Radiation, 2014, 21(5): 968–975.

    [21] Rommeveaux A, Assoufid L, Ohashi H, et al. Second metrology round-robin of APS, ESRF and SPring-8 laboratories of ellip-tical and spherical hard-x-ray mirrors[J]. Proceedings of SPIE, 2007, 6704: 67040B.

    [22] Siewert F, Buchheim J, Zeschke T, et al. Sub-nm accuracy metrology for ultra-precise reflective X-ray optics[J]. Nuclear Instruments and Methods in Physics Research Section A: Ac-celerators, Spectrometers, Detectors and Associated Equip-ment, 2011, 635(1): S52–S57.

    [24] Lacey I, Artemiev N A, Domning E E, et al. The developmental long trace profiler (DLTP) optimized for metrology of side-facing optics at the ALS[C]// Advances in Metrology for X-Ray and EUV Optics V. International Society for Optics and Photonics, 2014.

    [25] http: //www.optophase.com/Brochure/OEG/Flatscan/NOM-Dars t.f.Liz.Ang.-OEG.pdf.

    [26] Zhang R Z, Yang C L, Xu Q, et al. Testing the large aperture optical components by the stitching interferometer[J]. Optical Technique, 2001, 27(6): 516–517.

    [27] Yamauchi K, Yamamura K, Mimura H, et al. Microstitching interferometry for x-ray reflective optics[J]. Review of Scientific Instruments, 2003, 74(5): 2894–2898.

    [28] Mimura H, Yumoto H, Matsuyama S, et al. Relative angle determinable stitching interferometry for hard x-ray reflective optics[J]. Review of Scientific Instruments, 2005, 76(4): 045102.

    [29] Yumoto H, Mimura H, Kimura T, et al. Stitching interferometric metrology for steeply curved x-ray mirrors[J]. Surf. Interface Anal., 2008, 40(6–7): 1023–1027.

    [30] Yumoto H, Mimura H, Handa S, et al. Stitching-angle measur-able microscopic-interferometer: Surface-figure metrology tool for hard X-ray nanofocusing mirrors with large curvature[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2010, 616(2–3): 203–206.

    [31] Yumoto H, Koyama T, Matsuyama S, et al. Stitching interfero-metry for ellipsoidal x-ray mirrors[J]. Review of Scientific In-struments, 2016, 87(5): 51905.

    [32] Assoufid L, Qian J, Kewish C M, et al. A microstitching interfe-rometer for evaluating the surface profile of precisely figured x-ray K-B mirrors[J]. Proceedings of SPIE, 2007, 6704: 670406.

    [33] Asundi A K, Ohashi H, Assoufid L, et al. Surface slope metrol-ogy of highly curved X-ray optics with an interferometric mi-croscope[C]// Advances in Metrology for X-Ray and EUV Op-tics VII, 2017: 1–10.

    [34] Khounsary A M, Mimura H, Dinger U, et al. Microstitching in-terferometry for nanofocusing mirror optics[C]//Advances in Mirror Technology for X-Ray, EUV Lithography, Laser, and Other Applications II, 2004: 170–180.

    [35] Rommeveaux A, Barrett R. Micro-stitching interferometry at the ESRF[J]. Nucl. Instrum. Methods Phys. Res., Sect.A, 2010, 616(2–3): 183–187.

    [36] Vivo A, Lantelme B, Baker R, et al. Stitching methods at the European Synchrotron Radiation Facility (ESRF)[J]. Review of Scientific Instruments, 2016, 87(5): 51908.

    [37] Li M. Optical metrology at BSRF[J]. Proceedings of SPIE, 2016.

    [38] Huang L, Xue J, Gao B, et al. One-dimensional angu-lar-measurement-based stitching interferometry[J]. Optics Ex-press. 2018, 26(8): 9882.

    [39] Huang L, Idir M, Zuo C, et al. Two-dimensional stitching inter-ferometry based on tilt measurement[J]. Optics Express, 2018, 26(18): 23278–23286.

    [40] Shi Y N, Xu X D, Huang Q S, et al. Development of relative angle determinable stitching interferometry for high-accuracy x-ray focusing mirrors[J]. Proceedings of SPIE, 2017, 10385: 103850M.

    [41] Xu W, Liu Y, Marcelli A, et al. The complexity of thermoelectric materials: why we need powerful and brilliant synchrotron radi-ation sources?[J]. Materials Today Physics, 2018, 6: 68–82.

    Li Ming, Wu Jieli, Wu Yongqian, Xu Yan, Zhang Dongni, Hong Zhen, Yang Fugui, Wan Yongjian. A review on the fabrication technology of X-ray reflector[J]. Opto-Electronic Engineering, 2020, 47(8): 200205
    Download Citation