[1] M. A. Deture, D. W. Dickson. The neuropathological diagnosis of Alzheimer’s disease. Mol. Neurodegener., 14, 32(2019).
[2] S. A. Tatulian. Challenges and hopes for Alzheimer’s disease. Drug Discov. Today., 27, 1027-1043(2022).
[3] K. G. Yiannopoulou, S. G. Papageorgiou. Current and future treatments in alzheimer disease: An update. J. Cent. Nerv. Syst. Dis., 12, 1179573520907397(2020).
[4] Z. Breijyeh, R. Karaman. Comprehensive review on Alzheimer’s disease: Causes and treatment. Molecules, 25, 5789(2020).
[5] Y. Ju, K. Y. Tam. Pathological mechanisms and therapeutic strategies for Alzheimer’s disease. Neural. Regen. Res., 17, 543-549(2022).
[6] J. A. Hardy, G. A. Higgins. Alzheimer’s disease: The amyloid cascade hypothesis. Science, 256, 184-185(1992).
[7] A. Kwakowsky, H. J. Waldvogel, R. L. Faull. The effects of amyloid-beta on hippocampal glutamatergic receptor and transporter expression. Neural. Regen. Res., 16, 1399-1401(2021).
[8] O. Hansson. Biomarkers for neurodegenerative diseases. Nat. Med., 27, 954-963(2021).
[9] Y. W. Jun, S. W. Cho, J. Jung, Y. Huh, Y. Kim, D. Kim, K. H. Ahn. Frontiers in probing Alzheimer’s disease biomarkers with fluorescent small molecules. ACS Cent. Sci., 5, 209-217(2019).
[10] A. Aliyan, N. P. Cook, A. A. Martí. Interrogating amyloid aggregates using fluorescent probes. Chem. Rev., 119, 11819-11856(2019).
[11] K. Wanderi, Z. Cui. Organic fluorescent nanoprobes with NIR-IIb characteristics for deep learning. Exploration, 2, 20210097(2022).
[12] X. Xiang, X. Feng, S. Lu, B. Jiang, D. Hao, Q. Pei, Z. Xie, X. Jing. Indocyanine green potentiated paclitaxel nanoprodrugs for imaging and chemotherapy. Exploration, 2, 20220008(2022).
[13] M. Biancalana, S. Koide. Molecular mechanism of Thioflavin-T binding to amyloid fibrils. Biochim. Biophys. Acta. Proteins. Proteom., 1804, 1405-1412(2010).
[14] H. Levine Iii. Thioflavine T interaction with synthetic Alzheimer’s disease β-amyloid peptides: Detection of amyloid aggregation in solution. Protein. Sci., 2, 404-410(1993).
[15] C. Dyrager, R. P. Vieira, S. Nyström, K. P. R. Nilsson, T. Storr. Synthesis and evaluation of benzothiazole-triazole and benzothiadiazole-triazole scaffolds as potential molecular probes for amyloid-β aggregation. New J. Chem., 41, 1566-1573(2017).
[16] M. Groenning. Binding mode of Thioflavin T and other molecular probes in the context of amyloid fibrils — current status. J. Biol. Chem., 3, 1-18(2010).
[17] Y. D. Park, M. Kinger, C. Min, S. Y. Lee, Y. Byun, J. W. Park, J. Jeon. Synthesis and evaluation of curcumin-based near-infrared fluorescent probes for the in vivo optical imaging of amyloid-β plaques. Bioorg. Chem., 115, 105167(2021).
[18] C. Chen, Z. Liang, B. Zhou, X. Li, C. Lui, N. Y. Ip, J. Y. Qu. In vivo near-infrared two-photon imaging of amyloid plaques in deep brain of Alzheimer’s disease mouse model. ACS Chem. Neurosci., 9, 3128-3136(2018).
[19] J. Wu, C. Shao, X. Ye, X. Di, D. Li, H. Zhao, B. Zhang, G. Chen, H.-K. Liu, Y. Qian. In vivo brain imaging of amyloid-β aggregates in alzheimer’s disease with a near-infrared fluorescent probe. ACS Sens., 6, 863-870(2021).
[20] J. An, P. Verwilst, H. Aziz, J. Shin, S. Lim, I. Kim, Y. K. Kim, J. S. Kim. Picomolar-sensitive beta-amyloid fibril fluorophores by tailoring the hydrophobicity of biannulated pi-elongated dioxaborine-dyes. Bioact. Mater., 13, 239-248(2022).
[21] J.-Y. Kim, S. Sahu, Y.-H. Yau, X. Wang, S. G. Shochat, P. H. Nielsen, M. S. Dueholm, D. E. Otzen, J. Lee, M. M. S. Delos Santos, J. K. H. Yam, N.-Y. Kang, S.-J. Park, H. Kwon, T. Seviour, L. Yang, M. Givskov, Y.-T. Chang. Detection of pathogenic biofilms with bacterial amyloid targeting fluorescent probe, CDy11. J. Am. Chem. Soc., 138, 402-407(2016).
[22] W. M. Ren, J. J. Zhang, C. Peng, H. J. Xiang, J. J. Chen, C. Y. Peng, W. L. Zhu, R. M. Huang, H. Y. Zhang, Y. H. Hu. Fluorescent imaging of beta-amyloid using BODIPY based near-infrared off-on fluorescent probe. Bioconjug. Chem., 29, 3459-3466(2018).
[23] A. K. Mora, S. Murudkar, N. Shivran, S. Mula, S. Chattopadhyay, S. Nath. Monitoring the formation of insulin oligomers using a NIR emitting glucose-conjugated BODIPY dye. Int. J. Biol. Macromol., 166, 1121-1130(2021).
[24] Y. Wang, Y. Qiu, A. Sun, Y. Xiong, H. Tan, Y. Shi, P. Yu, G. Roy, L. Zhang, J. Yan. Dual-functional AIE fluorescent probes for imaging beta-amyloid plaques and lipid droplets. Anal. Chim. Acta., 1133, 109-118(2020).
[25] A. Iyaswamy, X. Wang, S. Krishnamoorthi, V. Kaliamoorthy, S. G. Sreenivasmurthy, S. S. Kumar Durairajan, J. X. Song, B. C. Tong, Z. Zhu, C. F. Su, J. Liu, K. H. Cheung, J. H. Lu, J. Q. Tan, H. W. Li, M. S. Wong, M. Li. Theranostic F-SLOH mitigates Alzheimer’s disease pathology involving TFEB and ameliorates cognitive functions in Alzheimer’s disease models. Redox. Biol., 51, 102280(2022).
[26] J. Luo, Z. Xie, J. W. Y. Lam, L. Cheng, H. Chen, C. Qiu, H. S. Kwok, X. Zhan, Y. Liu, D. Zhu, B. Z. Tang. Aggregation-induced emission of 1-methyl-1,2,3,4,5-pentaphenylsilole. ChemComm., 18, 1740-1741(2001).
[27] X. Cai, B. Liu. Aggregation-Induced Emission: Recent Advances in Materials and Biomedical Applications. Angew. Chem. Int. Ed., 59, 9868-9886(2020).
[28] M. Gao, B. Z. Tang. Fluorescent sensors based on aggregation-induced emission: Recent advances and perspectives. ACS Sens., 2, 1382-1399(2017).
[29] H. Liu, N. Yan, H. Bai, R. T. K. Kwok, B. Z. Tang. Aggregation-induced emission luminogens for augmented photosynthesis. Exploration, 2, 20210053(2022).
[30] Y. Zhou, J. Hua, D. Ding, Y. Tang. Interrogating amyloid aggregation with aggregation-induced emission fluorescence probes. Biomaterials, 286, 121605(2022).
[31] Y. Wang, D. Mei, X. Zhang, D.-H. Qu, J. Mei. Visualizing Aβ deposits in live young AD model mice with a simple red/near-infrared-fluorescent AIEgen. Sci. China Chem., 65, 339-352(2022).
[32] Z. Lv, Z. Man, H. Cui, Z. Xu, H. Cao, S. Li, Q. Liao, Q. He, L. Zheng, H. Fu. Red AIE luminogens with tunable organelle specific anchoring for live cell dynamic super resolution imaging. Adv. Funct. Mater., 31, 2009329(2021).
[33] Y.-L. Wang, T. Luo, J. Zhang, C. Fan, X. Li, C. Li, H. Gong, Q. Luo, M.-Q. Zhu. AIE-based fluorescent micro-optical sectioning tomography for automatic 3D mapping of β-amyloid plaques in Tg mouse whole brain. Chem. Eng. J., 446, 136840(2022).
[34] M. Xu, R. Li, X. Li, G. Lv, S. Li, A. Sun, Y. Zhou, T. Yi. NIR fluorescent probes with good water-solubility for detection of amyloid beta aggregates in Alzheimer’s disease. J. Mater. Chem. B, 7, 5535-5540(2019).
[35] X.-Y. Liu, X.-J. Wang, L. Shi, Y.-H. Liu, L. Wang, K. Li, Q. Bu, X.-B. Cen, X.-Q. Yu. Rational design of quinoxalinone-based red-emitting probes for high-affinity and long-term visualizing amyloid-β in vivo. Anal. Chem., 94, 7665-7673(2022).
[36] Y. Wang, D. Mei, X. Zhang, D.-H. Qu, J. Mei. Visualizing Aβ deposits in live young AD model mice with a simple red/near-infrared-fluorescent AIEgen. Sci. China Chem., 65, 339-352(2021).