• Chinese Journal of Lasers
  • Vol. 48, Issue 12, 1208001 (2021)
Jinheng Du1, Wei Song2, and Huaijin Zhang1、*
Author Affiliations
  • 1State Key Laboratory of Crystal Materials, Institute of Crystal Materials, Shandong University, Jinan, Shandong 250100, China
  • 2CETC Deqing Huaying Electronics Co., Ltd., Huzhou, Zhejiang 313000, China
  • show less
    DOI: 10.3788/CJL202148.1208001 Cite this Article Set citation alerts
    Jinheng Du, Wei Song, Huaijin Zhang. Advances in Three-Dimensional Quasi-Phase Matching[J]. Chinese Journal of Lasers, 2021, 48(12): 1208001 Copy Citation Text show less
    References

    [1] Maiman T H. Stimulated optical radiation in ruby[J]. Nature, 187, 493-494(1960).

    [2] Franken P A, Hill A E, Peters C W et al. Generation of optical harmonics[J]. Physical Review Letters, 7, 118-119(1961).

    [3] Armstrong J A, Bloembergen N, Ducuing J et al. Interactions between light waves in a nonlinear dielectric[J]. Physical Review, 127, 1918-1939(1962).

    [4] Feng D, Ming N B, Hong J F et al. Enhancement of second-harmonic generation in LiNbO3 crystals with periodic laminar ferroelectric domains[J]. Applied Physics Letters, 37, 607-609(1980). http://scitation.aip.org/content/aip/journal/apl/37/7/10.1063/1.92035

    [5] Piltch M S, Cantrell C D, Sze R C. Infrared second-harmonic generation in nonbirefringent cadmium telluride[J]. Journal of Applied Physics, 47, 3514-3517(1976). http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=5102924

    [6] Szilagyi A, Hordvik A, Schlossberg H. A quasi-phase-matching technique for efficient optical mixing and frequency doubling[J]. Journal of Applied Physics, 47, 2025-2032(1976). http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=5102660

    [7] Thompson D E. McMullen J D, Anderson D B. Second-harmonic generation in GaAs “stack of plates” using high-power CO2 laser radiation[J]. Applied Physics Letters, 29, 113-115(1976).

    [8] Zhu S N, Zhu Y Y, Ming N B. Quasi-phase-matched third-harmonic generation in a quasi-periodic optical superlattice[J]. Science, 278, 843-846(1997). http://search.ebscohost.com/login.aspx?direct=true&db=aph&AN=9711206908&site=ehost-live

    [9] Xu T X, Lu D Z, Yu H H et al. A naturally grown three-dimensional nonlinear photonic crystal[J]. Applied Physics Letters, 108, 051907(2016).

    [10] Risk W P, Lau S D. Periodic electric field poling of KTiOPO4 using chemical patterning[J]. Applied Physics Letters, 69, 3999-4001(1996).

    [11] Zhu S N, Zhu Y Y, Zhang Z Y et al. LiTaO3 crystal periodically poled by applying an external pulsed field[J]. Journal of Applied Physics, 77, 5481-5483(1995).

    [12] Ishizuki H, Taira T. High energy quasi-phase-matched optical parametric oscillation in a periodically poled MgO: LiNbO3 device with a 5 mm × 5 mm aperture[J]. Optics Letters, 30, 2918-2920(2005).

    [13] Xu P, Li K, Zhao G et al. Quasi-phase-matched generation of tunable blue light in a quasi-periodic structure[J]. Optics Letters, 29, 95-97(2004).

    [14] Thompson R J, Tu M, Aveline D C et al. High power single frequency 780 nm laser source generated from frequency doubling of a seeded fiber amplifier in a cascade of PPLN crystals[J]. Optics Express, 11, 1709-1713(2003).

    [15] Bosenberg W R, Alexander J I, Myers L E et al. 2.5 W, continuous wave, 629 nm solid-state laser source[C]. //Advanced Solid State Lasers 1998, February 2, 1998, Coeur dAlene, Idaho, United States, VL9(1998).

    [16] Petrov V. Frequency down-conversion of solid-state laser sources to the mid-infrared spectral range using non-oxide nonlinear crystals[J]. Progress in Quantum Electronics, 42, 1-106(2015).

    [17] Canalias C, Pasiskevicius V, Fokine M et al. Backward quasi-phase-matched second-harmonic generation in submicrometer periodically poled flux-grown KTiOPO4[J]. Applied Physics Letters, 86, 181105(2005).

    [18] Moloney J V, Newell A C. Nonlinear optics[J]. Physica D: Nonlinear Phenomena, 44, 1-37(1990).

    [19] Minck R W, Terhune R W, Wang C C. Nonlinear optics[J]. Applied Optics, 5, 1595-1612(1966).

    [20] Zhu S N. Research on the design and preparation of periodic and quasi-periodic LiTaO superlattices and the effect of laser frequency conversion[D], 16-65(1996).

    [21] Xu T X. Studies of growth, characterization and three-dimensional quasi phase matching properties of Barium calcium titanate crystal[D], 80-120(2018).

    [22] Giordmaine J A. Mixing of light beams in crystals[J]. Physical Review Letters, 8, 19-20(1962).

    [23] Maker P D, Terhune R W, Nisenoff M et al. Effects of dispersion and focusing on the production of optical harmonics[J]. Physical Review Letters, 8, 21-22(1962).

    [24] Kleinman D A. Theory of second harmonic generation of light[J]. Physical Review, 128, 1761-1775(1962).

    [25] Adhav R, Wallace R. Second harmonic generation in 90° phase-matched KDP isomorphs[J]. IEEE Journal of Quantum Electronics, 9, 855-856(1973).

    [26] Phillips J P, Banerjee S, Smith J et al. High energy, high repetition rate, second harmonic generation in large aperture DKDP, YCOB, and LBO crystals[J]. Optics Express, 24, 19682-19694(2016).

    [27] Kokh A, Kononova N, Mennerat G et al. Growth of high quality large size LBO crystals for high energy second harmonic generation[J]. Journal of Crystal Growth, 312, 1774-1778(2010).

    [28] Driscoll T A, Hoffman H J, Stone R E et al. Efficient second-harmonic generation in KTP crystals[J]. Journal of the Optical Society of America B, 3, 683-686(1986).

    [29] Liu H, Yao J G, Puri A. Second and third harmonic generation in BBO by femtosecond Ti: sapphire laser pulses[J]. Optics Communications, 109, 139-144(1994).

    [30] Liu Y Q, Qi H W, Lu Q M et al. Type-II second-harmonic-generation properties of YCOB and GdCOB single crystals[J]. Optics Express, 23, 2163-2173(2015).

    [31] Li C. The study of quasi phase matching of spontaneous three-dimensional ferroelectric super-crystal potassium tantalate niobate[D], 42-66(2020).

    [32] Fejer M M, Magel G A, Jundt D H et al. Quasi-phase-matched second harmonic generation: tuning and tolerances[J]. IEEE Journal of Quantum Electronics, 28, 2631-2654(1992).

    [33] Berger V. Nonlinear photonic crystals[J]. Physical Review Letters, 81, 4136-4139(1998).

    [34] Arie A, Voloch N. Periodic, quasi-periodic, and random quadratic nonlinear photonic crystals[J]. Laser & Photonics Reviews, 4, 355-373(2010).

    [35] Zhang Y, Wen J M, Zhu S N et al. Nonlinear talbot effect[J]. Physical Review Letters, 104, 183901(2010).

    [36] Zhang Y, Qi Z, Wang W et al. Quasi-phase-matched Čerenkov second-harmonic generation in a hexagonally poled LiTaO3 waveguide[J]. Applied Physics Letters, 89, 171113(2006).

    [37] Torres J P, Alexandrescu A, Carrasco S et al. Quasi-phase matching engineering for spatial control of entangled two-photon states[J]. Optics Letters, 29, 376-378(2004).

    [38] Yu X Q, Xu P, Xie Z D et al. Transforming spatial entanglement using a domain-engineering technique[J]. Physical Review Letters, 101, 233601(2008).

    [39] Chen J J, Chen X F. Phase matching in three-dimensional nonlinear photonic crystals[J]. Physical Review A, 80, 013801(2009).

    [40] Pogosian T, Lai N D. Theoretical investigation of three-dimensional quasi-phase-matching photonic structures[J]. Physical Review A, 94, 063821(2016).

    [41] Yablonovitch E. Inhibited spontaneous emission in solid-state physics and electronics[J]. Physical Review Letters, 58, 2059-2062(1987).

    [42] Nakao K J, Ozaki M, Yoshino K. Reversal of spontaneous polarization direction in ferroelectric liquid crystal with temperature[J]. Japanese Journal of Applied Physics, 26, 104-106(1987).

    [43] Ikeda S, Saito T, Nonomura M et al. Ferroelectric properties and polarization reversal phenomena in nylon 11[J]. Ferroelectrics, 171, 329-338(1995).

    [44] Liu Z W, Zhu S N, Zhu Y Y et al. A scheme to realize three-fundamental-colors laser based on quasi-phase matching[J]. Solid State Communications, 119, 363-366(2001).

    [45] Canalias C, Nordlöf M, Pasiskevicius V et al. A KTiOPO4 nonlinear photonic crystal for blue second harmonic generation[J]. Applied Physics Letters, 94, 081121(2009).

    [46] Su H, Ruan S C, Qin Y Q et al. Multigrating quasi-phase-matched optical parametric oscillation in periodically poled MgO: LiNbO3 device[J]. Journal of Applied Physics, 100, 053107(2006).

    [47] Nakamura K, Miyazu J, Sasaki Y et al. Space-charge-controlled electro-optic effect: optical beam deflection by electro-optic effect and space-charge-controlled electrical conduction[J]. Journal of Applied Physics, 104, 013105(2008).

    [48] Wei D Z, Wang C W, Wang H J et al. Experimental demonstration of a three-dimensional lithium niobate nonlinear photonic crystal[J]. Nature Photonics, 12, 596-600(2018).

    [49] Broderick N G, Ross G W, Offerhaus H L et al. Hexagonally poled lithium niobate: a two-dimensional nonlinear photonic crystal[J]. Physical Review Letters, 84, 4345-4348(2000).

    [50] Rosenman G, Urenski P, Agronin A et al. Submicron ferroelectric domain structures tailored by high-voltage scanning probe microscopy[J]. Applied Physics Letters, 82, 103-105(2003).

    [51] Yamada M, Nada N, Watanabe K. Fabrication of periodically reversed domain structure for second-harmonic-generation in LiNbO3 by applying voltage[C]. //Integrated Photonics Research 1992, April 13, 1992, New Orleans, Louisiana, TuC2(1992).

    [52] Wei D Z, Zhu Y Z, Zhong W H et al. Directly generating orbital angular momentum in second-harmonic waves with a spirally poled nonlinear photonic crystal[J]. Applied Physics Letters, 110, 261104(2017).

    [53] Magel G A, Fejer M M, Byer R L. Quasi-phase-matched second-harmonic generation of blue light in periodically poled LiNbO3[J]. Applied Physics Letters, 56, 108-110(1990).

    [54] Yamada M, Kishima K. Fabrication of periodically reversed domain structure for SHG in LiNbO3 by direct electron beam lithography at room temperature[J]. Electronics Letters, 27, 828-829(1991).

    [55] Wu D, Xu J, Niu L G et al. In-channel integration of designable microoptical devices using flat scaffold-supported femtosecond-laser microfabrication for coupling-free optofluidic cell counting[J]. Light: Science & Applications, 4, e228(2015).

    [56] Malinauskas M, Žukauskas A, Hasegawa S et al. Ultrafast laser processing of materials: from science to industry[J]. Light: Science & Applications, 5, e16133(2016).

    [57] Ying C Y J, Muir A C, Valdivia C E et al. Light-mediated ferroelectric domain engineering and micro-structuring of lithium niobate crystals[J]. Laser & Photonics Reviews, 6, 526-548(2012).

    [58] Boes A, Crasto T, Steigerwald H et al. Direct writing of ferroelectric domains on strontium barium niobate crystals using focused ultraviolet laser light[J]. Applied Physics Letters, 103, 142904(2013).

    [59] Chen X, Karpinski P, Shvedov V et al. Quasi-phase matching via femtosecond laser-induced domain inversion in lithium niobate waveguides[J]. Optics Letters, 41, 2410-2413(2016).

    [60] Kroesen S, Tekce K, Imbrock J et al. Monolithic fabrication of quasi phase-matched waveguides by femtosecond laser structuring the χ(2) nonlinearity[J]. Applied Physics Letters, 107, 101109(2015).

    [61] Zhang Y, Gao Z D, Qi Z et al. Nonlinear Čerenkov radiation in nonlinear photonic crystal waveguides[J]. Physical Review Letters, 100, 163904(2008).

    [62] Sheng Y, Best A, Butt H J et al. Three-dimensional ferroelectric domain visualization by Čerenkov-type second harmonic generation[J]. Optics Express, 18, 16539-16545(2010).

    [63] Imbrock J, Wesemann L, Kroesen S et al. Waveguide-integrated three-dimensional quasi-phase-matching structures[J]. Optica, 7, 28-34(2020).

    [64] Hooton J A, Merz W J. Etch patterns and ferroelectric domains in BaTiO3 single crystals[J]. Physical Review, 98, 409-413(1955).

    [65] Hu Y H, Chan H M, Wen Z X et al. Scanning electron microscopy and transmission electron microscopy study of ferroelectric domains in doped BaTiO3[J]. Chemischer Informationsdienst, 69, 594-602(2010).

    [66] von Hippel A. Ferroelectricity, domain structure, and phase transitions of barium titanate[J]. Reviews of Modern Physics, 22, 221-237(1950).

    [67] Xu T X, Switkowski K, Chen X et al. Three-dimensional nonlinear photonic crystal in ferroelectric barium calcium titanate[J]. Nature Photonics, 12, 591-595(2018).

    [68] Saltiel S M, Neshev D N, Fischer R et al. Generation of second-harmonic conical waves via nonlinear Bragg diffraction[J]. Physical Review Letters, 100, 103902(2008).

    [69] Saltiel S M, Sheng Y, Voloch-Bloch N et al. Cerenkov-type second-harmonic generation in two-dimensional nonlinear photonic structures[J]. IEEE Journal of Quantum Electronics, 45, 1465-1472(2009).

    [70] Pierangeli D, Ferraro M, di Mei F et al. Super-crystals in composite ferroelectrics[J]. Nature Communications, 7, 10674(2016).

    [71] Berkowski M, Fink-Finowicki J, Piekarczyk W et al. Czochralski growth and structural investigations of La1-xNdxGaO3 solid solution single crystals[J]. Journal of Crystal Growth, 209, 75-80(2000).

    [72] Wang J Y, Guan Q C, Liu Y G et al. Photorefractive properties and self-pumped phase conjugation of tetragonal Fe-doped KTa1-xNbxO3 crystal[J]. Applied Physics Letters, 61, 2761-2763(1992).

    [73] di Mei F, Falsi L, Flammini M et al. Giant broadband refraction in the visible in a ferroelectric perovskite[J]. Nature Photonics, 12, 734-738(2018).

    [74] DelRe E, Spinozzi E, Agranat A J et al. Scale-free optics and diffractionless waves in nano-disordered ferroelectrics[C]. //∥CLEO: 2011-Laser Applications to Photonic Applications 2011, May 1-6, 2011, Baltimore, Maryland, QMA4(2011).

    [75] Li C, Wang X P, Wu Y et al. Three-dimensional nonlinear photonic crystal in naturally grown potassium-tantalate-niobate perovskite ferroelectrics[J]. Light: Science & Applications, 9, 193(2020).

    [76] Wang X P, Wang J Y, Yu Y G et al. Growth of cubic KTa1-xNbxO3 crystal by Czochralski method[J]. Journal of Crystal Growth, 293, 398-403(2006).

    [77] Zhang H Y, He X H, Shih Y H et al. Optical and nonlinear optical study of KTa0.52Nb0.48O3 epitaxial film[J]. Optics Letters, 22, 1745-1747(1997).

    [78] Fang X Y, Wang H J, Yang H C et al. Multichannel nonlinear holography in a two-dimensional nonlinear photonic crystal[J]. Physical Review A, 102, 043506(2020).

    [79] Fang X Y, Yang H C, Yao W Z et al. High-dimensional orbital angular momentum multiplexing nonlinear holography[J]. Advanced Photonics, 3, 015001(2021). http://www.opticsjournal.net/Articles/Abstract?aid=OJ49f08275d2f189e7

    [80] Liu S, Mazur L M, Krolikowski W et al. Nonlinear volume holography in 3D nonlinear photonic crystals[J]. Laser & Photonics Reviews, 14, 2000224(2020). http://onlinelibrary.wiley.com/doi/full/10.1002/lpor.202000224

    Jinheng Du, Wei Song, Huaijin Zhang. Advances in Three-Dimensional Quasi-Phase Matching[J]. Chinese Journal of Lasers, 2021, 48(12): 1208001
    Download Citation