• Opto-Electronic Engineering
  • Vol. 46, Issue 1, 180110 (2019)
Tian Peng1、2, Yan Wei1、2、*, Li Fanxing1、2, Yang Fan1、2, Wu Yunfei1、2, and He Yu1、2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.12086/oee.2019.180110 Cite this Article
    Tian Peng, Yan Wei, Li Fanxing, Yang Fan, Wu Yunfei, He Yu. Biology microscopy using well-distributed sphere digital in-line holography[J]. Opto-Electronic Engineering, 2019, 46(1): 180110 Copy Citation Text show less
    References

    [1] Jiang M S, Zhang N N, Zhang X D, et al. Applications of hybrid search strategy in microscope autofocus[J]. Opto-Electronic Engineering, 2017, 44(7): 685–694.

    [2] Lu B B, Liu L Q, Zheng Y M, et al. A method for segmenting the microscopic cable harness image automatically[J]. Opto-Electronic Engineering, 2016, 43(10): 49–55.

    [3] Garcia-Sucerquia J, Xu W B, Jericho S K, et al. Digital in-line holographic microscopy[J]. Applied Optics, 2006, 45(5): 836–850.

    [4] Xu W, Jericho M H, Meinertzhagen I A, et al. Digital in-line holography of microspheres[J]. Applied Optics, 2002, 41(25): 5367–5375.

    [5] Malek M, Allano D, Cotmellec S, et al. Digital in-line holography for three-dimensional-two-components particle tracking velocimetry[J]. Measurement Science and Technology, 2004, 15(4): 699–705.

    [6] Das B, Yelleswarapu C S. Dual plane in-line digital holographic microscopy[J]. Optics Letters, 2010, 35(20): 3426–3428.

    [7] Zhang Y C, Xie C Q. Differential-interference-contrast digital in-line holography microscopy based on a single-optical-element[J]. Optics Letters, 2015, 40(21): 5015–5018.

    [8] Tian P, Hua Y L, Yang F, et al. High efficiency and flexible working distance digital in-line holographic microscopy based on Fresnel zone plate[J]. Measurement Science and Technology, 2017, 28(5): 055209.

    [9] Kim M K. Wavelength-scanning digital interference holography for optical section imaging[J]. Optics Letters, 1999, 24(23): 1693–1695.

    [10] Zhang T, Yamaguchi I. Three-dimensional microscopy with phase-shifting digital holography[J]. Optics Letters, 1998, 23(15): 1221–1223.

    [11] Yamaguchi I, Kato J I, Ohta S, et al. Image formation in phase-shifting digital holography and applications to microscopy[J]. Applied Optics, 2001, 40(34): 6177–6186.

    [12] Poon T C. Recent progress in optical scanning holography[J]. Journal of Holography and Speckle, 2004, 1(1): 6–25.

    [13] Yamaguchi I, Zhang T. Phase-shifting digital holography[J]. Optics Letters, 1997, 22(16): 1268–1270.

    [14] Das B, Yelleswarapu C S, Rao D V G L N. Quantitative phase microscopy using dual-plane in-line digital holography[J]. Applied Optics, 2012, 51(9): 1387–1395.

    [15] Massig J H. Digital off-axis holography with a synthetic aperture[J]. Optics Letters, 2002, 27(24): 2179–2181.

    [16] Sánchez-Ortiga E, Doblas A, Saavedra G, et al. Off-axis digital holographic microscopy: practical design parameters for operating at diffraction limit[J]. Applied Optics, 2014, 53(10): 2058–2066.

    CLP Journals

    [1] Hui Qiannan, Duan Cunli, Feng Bin, Wang Fan, Guo Rongli. Study of low-noise phase-shifting digital holographic microscopy using a long working distance objective[J]. Opto-Electronic Engineering, 2019, 46(12): 190140

    [2] Gu Xin, Huang Wei, Yang Limei, Li Feng. Microfluidic diffraction phase microscopy and its application in parasites measurement[J]. Opto-Electronic Engineering, 2019, 46(12): 190046

    Tian Peng, Yan Wei, Li Fanxing, Yang Fan, Wu Yunfei, He Yu. Biology microscopy using well-distributed sphere digital in-line holography[J]. Opto-Electronic Engineering, 2019, 46(1): 180110
    Download Citation