• Photonics Research
  • Vol. 6, Issue 9, 858 (2018)
Ruijun Wang1、2、*, Stephan Sprengel3, Anton Vasiliev1、2, Gerhard Boehm3, Joris Van Campenhout4, Guy Lepage4, Peter Verheyen4, Roel Baets1、2, Markus-Christian Amann3, and Gunther Roelkens1、2
Author Affiliations
  • 1Photonics Research Group, Ghent University-IMEC, Technologiepark-Zwijnaarde 15, B-9052 Ghent, Belgium
  • 2Center for Nano- and Biophotonics (NB-Photonics), Ghent University, B-9052 Ghent, Belgium
  • 3Walter Schottky Institut, Technische Universität München, Am Coulombwall 4, 85748 Garching, Germany
  • 4IMEC, Kapeldreef 75, Leuven B-3001, Belgium
  • show less
    DOI: 10.1364/PRJ.6.000858 Cite this Article Set citation alerts
    Ruijun Wang, Stephan Sprengel, Anton Vasiliev, Gerhard Boehm, Joris Van Campenhout, Guy Lepage, Peter Verheyen, Roel Baets, Markus-Christian Amann, Gunther Roelkens. Widely tunable 2.3  μm III-V-on-silicon Vernier lasers for broadband spectroscopic sensing[J]. Photonics Research, 2018, 6(9): 858 Copy Citation Text show less
    References

    [1] L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J.-M. Flaud, R. R. Gamache, J. J. Harrison, J.-M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, V. G. Tyuterev, G. Wagner. The HITRAN2012 molecular spectroscopic database. J. Quant. Spectrosc. Radiat. Transfer, 130, 4-50(2013).

    [2] N. V. Alexeeva, M. A. Arnold. Near-infrared microspectroscopic analysis of rat skin tissue heterogeneity in relation to noninvasive glucose sensing. J. Diabetes Sci. Technol., 3, 219-232(2009).

    [3] J. Hodgkinson, R. P. Tatam. Optical gas sensing: a review. Meas. Sci. Technol., 24, 012004(2013).

    [4] M. W. Sigrist, R. Bartlome, D. Marinov, J. M. Rey, D. E. Vogler, H. Wächter. Trace gas monitoring with infrared laser-based detection schemes. Appl. Phys. B, 90, 289-300(2008).

    [5] A. Elia, P. M. Lugarà, C. Di Franco, V. Spagnolo. Photoacoustic techniques for trace gas sensing based on semiconductor laser sources. Sensors, 9, 9616-9628(2009).

    [6] A. Hangauer, J. Chen, R. Strzoda, M. Ortsiefer, M.-C. Amann. Wavelength modulation spectroscopy with a widely tunable InP-based 2.3 micron vertical-cavity surface-emitting laser. Opt. Lett., 33, 1566-1568(2008).

    [7] B. Gerhard, A. Bachmann, J. Rosskopf, M. Ortsiefer, J. Chen, A. Hangauer, R. Meyer, R. Strzoda, M.-C. Amann. Comparison of InP-and GaSb-based VCSELs emitting at 2.3  μm suitable for carbon monoxide detection. J. Cryst. Growth, 323, 442-445(2011).

    [8] J. Chen, A. Hangauer, R. Strzoda, M. C. Amann. VCSEL-based calibration-free carbon monoxide sensor at 2.3  μm with in-line reference cell. Appl. Phys. B, 102, 381-389(2011).

    [9] X. Chao, J. B. Jeffries, R. K. Hanson. Absorption sensor for CO in combustion gases using 2.3  μm tunable diode lasers. Meas. Sci. Technol., 20, 115201(2009).

    [10] F. Stritzke, O. Diemel, S. Wagner. TDLAS-based NH3 mole fraction measurement for exhaust diagnostics during selective catalytic reduction using a fiber-coupled 2.2-μm DFB diode laser. Appl. Phys. B, 119, 143-152(2015).

    [11] Vertilas GmbH. Sensing applications.

    [12] Nanoplus GmbH. Distributed feedback lasers.

    [13] B. L. Upschulte, D. M. Sonnenfroh, M. G. Allen. Measurements of CO, CO2, OH, and H2O in room temperature and combustion gases by use of a broadly current-tuned multi-section InGaAsP diode laser. Appl. Opt., 38, 1506-1512(1999).

    [14] D. Weidmann, A. A. Kosterev, F. K. Tittel, N. Ryan, D. McDonald. Application of a widely electrically tunable diode laser to chemical gas sensing with quartz-enhanced photoacoustic spectroscopy. Opt. Lett., 29, 1837-1839(2004).

    [15] G. Wysocki, R. Lewicki, R. F. Curl, F. K. Tittel, L. Diehl, F. Capasso, M. Troccoli, G. Hofler, D. Bour, S. Corzine, R. Maulini, M. Giovannini, J. Faist. Widely tunable mode-hop free external cavity quantum cascade lasers for high resolution spectroscopy and chemical sensing. Appl. Phys. B, 92, 305-311(2008).

    [16] M. von Edlinger, R. Weih, J. Scheuermann, L. Nähle, M. Fischer, J. Koeth, M. Kamp, S. Höfling. Monolithic single mode interband cascade lasers with wide wavelength tunability. Appl. Phys. Lett., 109, 201109(2016).

    [17] S. Kalchmair, R. Blanchard, T. S. Mansuripur, G.-M. de Naurois, C. Pfluegl, M. F. Witinski, L. Diehl, F. Capasso, M. Loncar. High tuning stability of sampled grating quantum cascade lasers. Opt. Express, 23, 15734-15747(2015).

    [18] K. Vizbaras, E. Dvinelis, I. Šimonytė, A. Trinkūnas, M. Greibus, R. Songaila, T. Žukauskas, M. Kaušylas, A. Vizbaras. High power continuous-wave GaSb-based superluminescent diodes as gain chips for widely tunable laser spectroscopy in the 1.95–2.45  μm wavelength range. Appl. Phys. Lett., 107, 011103(2015).

    [19] S. Latkowski, A. Hänsel, P. J. van Veldhoven, D. D’Agostino, H. Rabbani-Haghighi, B. Docter, N. Bhattacharya, P. J. A. Thijs, H. P. M. M. Ambrosius, M. K. Smit, K. A. Williams, E. A. J. M. Bente. Monolithically integrated widely tunable laser source operating at 2  μm. Optica, 3, 1412-1417(2016).

    [20] A. Spott, J. Peters, M. L. Davenport, E. J. Stanton, C. D. Merritt, W. W. Bewley, I. Vurgaftman, C. S. Kim, J. R. Meyer, J. Kirch, L. J. Mawst, D. Botez, J. E. Bowers. Quantum cascade laser on silicon. Optica, 3, 545-551(2016).

    [21] W. Zhou, D. Wu, R. McClintock, S. Slivken, M. Razeghi. High performance monolithic, broadly tunable mid-infrared quantum cascade lasers. Optica, 4, 1228-1231(2017).

    [22] R. Wang, S. Sprengel, G. Boehm, R. Baets, M.-C. Amann, G. Roelkens. Broad wavelength coverage 2.3  μm III-V-on-silicon DFB laser array. Optica, 4, 972-975(2017).

    [23] E. J. Stanton, A. Spott, N. Volet, M. L. Davenport, J. E. Bowers. High-brightness lasers on silicon by beam combining. Proc. SPIE, 10108, 101080K(2017).

    [24] L. Vivien, L. Pavesi. Handbook of Silicon Photonics(2016).

    [25] Y. Zou, S. Chakravarty, C.-J. Chung, X. Xu, R. T. Chen. Mid-infrared silicon photonic waveguides and devices. Photon. Res., 6, 254-276(2018).

    [26] H. Lin, Z. Luo, T. Gu, L. C. Kimerling, K. Wada, A. Agarwal, J. Hu. Mid-infrared integrated photonics on silicon: a perspective. Nanophotonics, 7, 393-420(2017).

    [27] L. Tombez, E. J. Zhang, J. S. Orcutt, S. Kamlapurkar, W. M. J. Green. Methane absorption spectroscopy on a silicon photonic chip. Optica, 4, 1322-1325(2017).

    [28] E. M. P. Ryckeboer, R. Bockstaele, M. Vanslembrouck, R. Baets. Glucose sensing by waveguide-based absorption spectroscopy on a silicon chip. Biomed. Opt. Express, 5, 1636-1648(2014).

    [29] J. T. Robinson, L. Chen, M. Lipson. On-chip gas detection in silicon optical microcavities. Opt. Express, 16, 4296-4301(2008).

    [30] N. Hattasan, B. Kuyken, F. Leo, E. Ryckeboer, D. Vermeulen, G. Roelkens. High-efficiency SOI fiber-to-chip grating couplers and low-loss waveguides for the short-wave infrared. IEEE Photon. Technol. Lett., 24, 1536-1538(2012).

    [31] A. Spott, M. Davenport, J. Peters, J. Bovington, M. J. R. Heck, E. J. Stanton, I. Vurgaftman, J. Meyer, J. Bowers. Heterogeneously integrated 2.0 μm CW hybrid silicon lasers at room temperature. Opt. Lett., 40, 1480-1483(2015).

    [32] R. Wang, S. Sprengel, G. Boehm, M. Muneeb, R. Baets, M. C. Amann, G. Roelkens. 2.3  μm range InP-based type-II quantum well Fabry-Perot lasers heterogeneously integrated on a silicon photonic integrated circuit. Opt. Express, 24, 21081-21089(2016).

    [33] R. Wang, A. Malik, I. Šimonytė, A. Vizbaras, K. Vizbaras, G. Roelkens. Compact GaSb/silicon-on-insulator 2.0×  μm widely tunable external cavity lasers. Opt. Express, 24, 28977-28986(2016).

    [34] G. Roelkens, A. Abbasi, P. Cardile, U. Dave, A. De Groote, Y. de Koninck, S. Dhoore, X. Fu, A. Gassenq, N. Hattasan, Q. Huang, S. Kumari, S. Keyvaninia, B. Kuyken, L. Li, P. Mechet, M. Muneeb, D. Sanchez, H. Shao, T. Spuesens, A. Subramanian, S. Uvin, M. Tassaert, K. Van Gasse, J. Verbist, R. Wang, Z. Wang, J. Van Campenhout, X. Yin, J. Bauwelinck, G. Morthier, R. Baets, D. Van Thourhout. III-V-on-silicon photonic devices for optical communication and sensing. Photonics, 2, 969-1004(2015).

    [35] A. Spott, E. J. Stanton, N. Volet, J. D. Peters, J. R. Meyer, J. E. Bowers. Heterogeneous integration for mid-infrared silicon photonics. IEEE J. Sel. Top. Quantum Electron., 23, 8200810(2017).

    [36] R. Wang, M. Muneeb, S. Sprengel, G. Boehm, A. Malik, R. Baets, M.-C. Amann, G. Roelkens. III-V-on-silicon 2-μm-wavelength-range wavelength demultiplexers with heterogeneously integrated InP-based type-II photodetectors. Opt. Express, 24, 8480-8490(2016).

    [37] S. Sprengel, C. Grasse, P. Wiecha, A. Andrejew, T. Gruendl, G. Boehm, R. Meyer, M.-C. Amann. InP-based type-II quantum-well lasers and LEDs. IEEE J. Sel. Top. Quantum Electron., 19, 1900909(2013).

    [38] G. Wysocki, M. McCurdy, S. So, D. Weidmann, C. Roller, R. F. Curl, F. K. Tittel. Pulsed quantum-cascade laser-based sensor for trace-gas detection of carbonyl sulfide. Appl. Opt., 43, 6040-6046(2004).

    [39] J. Jágerská, P. Jouy, B. Tuzson, H. Looser, M. Mangold, P. Soltic, A. Hugi, R. Brönnimann, J. Faist, L. Emmenegger. Simultaneous measurement of NO and NO2 by dual-wavelength quantum cascade laser spectroscopy. Opt. Express, 23, 1512-1522(2015).

    CLP Journals

    [1] Xiu Liu, Lijuan Wang, Xuan Fang, Taojie Zhou, Guohong Xiang, Boyuan Xiang, Xueqing Chen, Suikong Hark, Hao Liang, Shumin Wang, Zhaoyu Zhang. Continuous wave operation of GaAsBi microdisk lasers at room temperature with large wavelengths ranging from 1.27 to 1.41  μm[J]. Photonics Research, 2019, 7(5): 508

    [2] Hui Ma, Haotian Yang, Bo Tang, Maoliang Wei, Junying Li, Jianghong Wu, Peng Zhang, Chunlei Sun, Lan Li, Hongtao Lin. Passive devices at 2 µm wavelength on 200 mm CMOS-compatible silicon photonics platform [Invited][J]. Chinese Optics Letters, 2021, 19(7): 071301

    Ruijun Wang, Stephan Sprengel, Anton Vasiliev, Gerhard Boehm, Joris Van Campenhout, Guy Lepage, Peter Verheyen, Roel Baets, Markus-Christian Amann, Gunther Roelkens. Widely tunable 2.3  μm III-V-on-silicon Vernier lasers for broadband spectroscopic sensing[J]. Photonics Research, 2018, 6(9): 858
    Download Citation