• Opto-Electronic Engineering
  • Vol. 45, Issue 11, 180124 (2018)
Chen Junyan*, Zhang Fei, Zhang Ming, Cai Jixiang, Ou Yi, and Yu Honglin
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.12086/oee.2018.180124 Cite this Article
    Chen Junyan, Zhang Fei, Zhang Ming, Cai Jixiang, Ou Yi, Yu Honglin. Radially polarized Bessel lens based on all-dielectric metasurface[J]. Opto-Electronic Engineering, 2018, 45(11): 180124 Copy Citation Text show less
    References

    [1] Zhan Q W. Cylindrical vector beams: from mathematical concepts to applications[J]. Advances in Optics and Photonics, 2009, 1(1): 1–57.

    [2] Luo J, Zhao Z Y, Pu M B, et al. Tight focusing of radially and azimuthally polarized light with plasmonic metalens[J]. Optics Communications, 2015, 356: 445–450.

    [3] Zhao Y, Belkin M A, Alù A. Twisted optical metamaterials for planarized ultrathin broadband circular polarizers[J]. Nature Communications, 2012, 3: 870.

    [4] Luo J, Yu H L, Song M W, et al. Highly efficient wavefront manipulation in terahertz based on plasmonic gradient metasurfaces[ J]. Optics Letters, 2014, 39(8): 2229–2231.

    [5] Gao H, Pu M B, Li X, et al. Super-resolution imaging with a Bessel lens realized by a geometric metasurface[J]. Optics Express, 2017, 25(12): 13933–13943.

    [6] Guo Y, Wang Y, Pu M, et al. Dispersion management of anisotropic metamirror for super-octave bandwidth polarization conversion[J]. Scientific Reports, 2015, 5(1): 8434.

    [7] Aieta F, Genevet P, Kats M A, et al. Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces[J]. Nano Letters, 2012, 12(9): 4932–4936.

    [8] Gao X M, Wang J, Gu H T, et al. Focusing properties of concentric piecewise cylindrical vector beam[J]. Optik-International Journal for Light and Electron Optics, 2007, 118(6): 257–265.

    [9] Man Z S, Fu S G, Wei G X. Focus engineering based on analytical formulae for tightly focused polarized beams with arbitrary geometric configurations of linear polarization[J]. Journal of the Optical Society of America A, 2017, 34(8): 1384–1391.

    [10] Stafeev S S, Kotlyar V V, Nalimov A G, et al. Subwavelength gratings for polarization conversion and focusing of laser light[J]. Photonics and Nanostructures-Fundamentals and Applications, 2017, 27: 32–41.

    [11] Yu N, Capasso F. Flat optics with designer metasurfaces[J]. Nature Materials, 2014, 13(2): 139–150.

    [12] Zhang F, Yu H L, Fang J W, et al. Efficient generation and tight focusing of radially polarized beam from linearly polarized beam with all-dielectric metasurface[J]. Optics Express, 2016, 24(6): 6656–6664.

    [13] Zhang B Z. Polarization vortex spatial optical solitons in Bessel optical lattices[J]. Physics Letters A, 2011, 375(7): 1110–1115.

    [14] El Halba E M, Boustimi M, Ez-zariy L, et al. Focusing properties of radially polarized Bessel-like beam with radial cosine phase wavefront by a high numerical aperture objective[J]. Optical and Quantum Electronics, 2017, 49(6): 220.

    [15] Chen H, Ling X H, Li Q G, et al. Generation of double-ring-shaped cylindrical vector beams by modulating Pancharatnam–Berry phase[J]. Optik-International Journal for Light and Electron Optics, 2017, 134: 227–232.

    [16] Li X, Pu M B, Zhao Z Y, et al. Catenary nanostructures as compact Bessel beam generators[J]. Scientific Reports, 2016, 6: 20524.

    [17] Pfeiffer C, Grbic A. Controlling vector Bessel beams with metasurfaces[ J]. Physical Review Applied, 2014, 2(4): 044012.

    [18] Yew E Y S, Sheppard C J R. Tight focusing of radially polarized Gaussian and Bessel-Gauss beams[J]. Optics Letters, 2007, 32(23): 3417–3419.

    [19] Wu G F, Wang F, Cai Y J. Generation and self-healing of a radially polarized Bessel-Gauss beam[J]. Physical Review A, 2014, 89(4): 043807.

    [20] Guo Y H, Pu M B, Zhao Z Y, et al. Merging geometric phase and plasmon retardation phase in continuously shaped metasurfaces for arbitrary orbital angular momentum generation[J]. ACS Photonics, 2016, 3(11): 2022–2029.

    [21] Zhang F, Pu M B, Luo J, et al. Symmetry breaking of photonic spin-orbit interactions in metasurfaces[J]. Opto-Electronic Engineering, 2017, 44(3): 319–325, 371.

    [22] Khonina S N, Karpeev S V, Paranin V D, et al. Polarization conversion under focusing of vortex laser beams along the axis of anisotropic crystals[J]. Physics Letters A, 2017, 381(30): 2444–2455.

    [23] Yu J J, Zhou C H, Jia W, et al. Generation of tightly focused twin Bessel beams using circular Dammann gratings under radial polarization incidence[J]. Optics Communications, 2012, 285(21–22): 4166–4170.

    [24] Zheng C L, Petersen T C, Kirmse H, et al. Axicon lens for electrons using a magnetic vortex: the efficient generation of a Bessel beam[J]. Physical Review Letters, 2017, 119(17): 174801.

    [25] Liu Y C, Ke Y G, Zhou J X, et al. Generation of perfect vortex and vector beams based on Pancharatnam-Berry phase elements[ J]. Scientific Reports, 2017, 7: 44096.

    [26] Dorn R, Quabis S, Leuchs G. The focus of light—linear polarization breaks the rotational symmetry of the focal spot[J]. Journal of Modern Optics, 2003, 50(12): 1917–1926.

    CLP Journals

    [1] Shen Yijia, Xie Xin, Pu Mingbo, Zhang Fei, Ma Xiaoliang1, Guo Yinghui, Li Xiong, Wang Changtao, Luo Xiangang. Achromatic metalens based on coordinative modulation of propagation phase and geometric phase[J]. Opto-Electronic Engineering, 2020, 47(10): 200237

    [2] Zhang Fei, Guo Yinghui, Pu Mingbo, Li Xiong, Ma Xiaoliang, Luo Xiangang. Metasurfaces enabled by asymmetric photonic spin-orbit interactions[J]. Opto-Electronic Engineering, 2020, 47(10): 200366

    Chen Junyan, Zhang Fei, Zhang Ming, Cai Jixiang, Ou Yi, Yu Honglin. Radially polarized Bessel lens based on all-dielectric metasurface[J]. Opto-Electronic Engineering, 2018, 45(11): 180124
    Download Citation