• Chinese Optics Letters
  • Vol. 20, Issue 8, 081701 (2022)
Daoqian Yang1、2, Zhongjiang Chen3、*, and Da Xing1、2
Author Affiliations
  • 1MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
  • 2Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
  • 3Department of Ophthalmology and Optometry, School of Medical Technology and Engineering, Fujian Medical University, Fuzhou 350004, China
  • show less
    DOI: 10.3788/COL202220.081701 Cite this Article Set citation alerts
    Daoqian Yang, Zhongjiang Chen, Da Xing. A novel needle probe for deeper photoacoustic viscoelasticity measurement[J]. Chinese Optics Letters, 2022, 20(8): 081701 Copy Citation Text show less
    References

    [1] J. F. Greenleaf, M. Fatemi, M. Insana. Selected methods for imaging elastic properties of biological tissues. Annu. Rev. Biomed. Eng., 5, 57(2003).

    [2] R. M. Sigrist, J. Liau, A. El Kaffas, M. C. Chammas, J. K. Willmann. Ultrasound elastography: review of techniques and clinical applications. Theranostics, 7, 1303(2017).

    [3] D. M. McGrath, N. Ravikumar, I. D. Wilkinson, A. F. Frangi, Z. A. Taylor. Magnetic resonance elastography of the brain: an in silico study to determine the influence of cranial anatomy. Magn. Reson. Med., 76, 645(2016).

    [4] W. M. Allen, K. Y. Foo, R. Zilkens, K. M. Kennedy, Q. Fang, L. Chin, B. F. Kennedy. Clinical feasibility of optical coherence micro-elastography for imaging tumor margins in breast-conserving surgery. Biomed. Opt. Express., 9, 6331(2018).

    [5] W. M. Allen, L. Chin, P. Wijesinghe, R. W. Kirk, B. Latham, D. D. Sampson, B. F. Kennedy. Wide-field optical coherence micro-elastography for intraoperative assessment of human breast cancer margins. Biomed. Opt. Express., 7, 4139(2016).

    [6] R. M. Lerner, S. R. Huang, K. J. Parker. “Sonoelasticity” images derived from ultrasound signals in mechanically vibrated tissues. Ultrasound Med Biol., 16, 231(1990).

    [7] M. Fatemi, J. F. Greenleaf. Ultrasound-stimulated vibro-acoustic spectrography. Science, 280, 82(1998).

    [8] G. Gao, S. Yang, D. Xing. Viscoelasticity imaging of biological tissues with phase-resolved photoacoustic measurement. Opt. Lett., 36, 3341(2011).

    [9] C. Chen, Y. Zhao, S. Yang, D. Xing. Mechanical characterization of intraluminal tissue with phase-resolved photoacoustic viscoelasticity endoscopy. Biomed. Opt. Express, 6, 4975(2015).

    [10] P. Wang, Z. Chen, D. Xing. Multi-parameter characterization of atherosclerotic plaques based on optical coherence tomography, photoacoustic and viscoelasticity imaging. Opt. Express, 28, 13761(2020).

    [11] Y. Zhao, C. Chen, S. Yang, D. Xing. Mechanical evaluation of lipid accumulation in atherosclerotic tissues by photoacoustic viscoelasticity imaging. Opt. Lett., 41, 4522(2016).

    [12] D. Jin, F. Yang, Z. Chen, S. Yang, D. Xing. Biomechanical and morphological multi-parameter photoacoustic endoscope for identification of early esophageal disease. Appl. Phys. Lett., 111, 103703(2017).

    [13] Q. Wang, Y. Shi, F. Yang, S. Yang. Quantitative photoacoustic elasticity and viscosity imaging for cirrhosis detection. Appl. Phys. Lett., 112, 211902(2018).

    [14] F. Yang, Z. Chen, D. Xing. Single-cell photoacoustic microrheology. IEEE Trans. Med. Imaging, 39, 1791(2019).

    [15] S. Du, Z. Chen, D. Xing. Spectral interferometric depth-resolved photoacoustic viscoelasticity imaging. Opt. Lett., 46, 1724(2021).

    [16] C. P. Liang, J. Wierwille, T. Moreira, G. Schwartzbauer, M. S. Jafri, C. M. Tang, Y. Chen. A forward-imaging needle-type OCT probe for image guided stereotactic procedures. Opt. Express, 19, 26283(2011).

    [17] X. Yang, D. Lorenser, R. A. McLaughlin, R. W. Kirk, M. Edmond, M. C. Simpson, D. D. Sampson. Imaging deep skeletal muscle structure using a high-sensitivity ultrathin side-viewing optical coherence tomography needle probe. Biomed. Opt. Express, 5, 136(2014).

    [18] H. Ramakonar, B. C. Quirk, R. W. Kirk, J. Li, A. Jacques, C. R. Lind, R. A. McLaughlin. Intraoperative detection of blood vessels with an imaging needle during neurosurgery in humans. Sci. Adv., 4, eaav4992(2018).

    [19] X. Li, C. Chudoba, T. Ko, C. Pitris, J. G. Fujimoto. Imaging needle for optical coherence tomography. Opt. Lett., 25, 1520(2000).

    [20] W. A. Reed, M. F. Yan, M. J. Schnitzer. Gradient-index fiber-optic microprobes for minimally invasive in vivo low-coherence interferometry. Opt. Lett., 27, 1794(2002).

    [21] Y. Mao, S. Chang, S. Sherif, C. Flueraru. Graded-index fiber lens proposed for ultrasmall probes used in biomedical imaging. Appl. Opt., 46, 5887(2007).

    [22] D. Lorenser, X. Yang, R. W. Kirk, B. C. Quirk, R. A. McLaughlin, D. D. Sampson. Ultrathin side-viewing needle probe for optical coherence tomography. Opt. Lett., 36, 3894(2011).

    [23] N. Iftimia, J. Park, G. Maguluri, S. Krishnamurthy, A. McWatters, S. H. Sabir. Investigation of tissue cellularity at the tip of the core biopsy needle with optical coherence tomography. Biomed. Opt. Express, 9, 694(2018).

    [24] K. M. Kennedy, R. A. McLaughlin, B. F. Kennedy, A. Tien, B. Latham, C. M. Saunders, D. D. Sampson. Needle optical coherence elastography for the measurement of microscale mechanical contrast deep within human breast tissues. J. Biomed. Opt., 18, 121510(2013).

    [25] R. A. McLaughlin, B. C. Quirk, A. Curatolo, R. W. Kirk, L. Scolaro, D. Lorenser, D. D. Sampson. Imaging of breast cancer with optical coherence tomography needle probes: feasibility and initial results. IEEE J. Sel. Top. Quantum Electron, 18, 1184(2011).

    [26] A. Curatolo, R. A. McLaughlin, B. C. Quirk, R. W. Kirk, A. G. Bourke, B. A. Wood, D. D. Sampson. Ultrasound-guided optical coherence tomography needle probe for the assessment of breast cancer tumor margins. Am. J. Roentgenol., 199, W520(2012).

    [27] M. Villiger, D. Lorenser, R. A. McLaughlin, B. C. Quirk, R. W. Kirk, B. E. Bouma, D. D. Sampson. Deep tissue volume imaging of birefringence through fibre-optic needle probes for the delineation of breast tumour. Sci. Rep., 6, 28771(2016).

    Data from CrossRef

    [1] Chu Zhang, Shunda Qiao, Yufei Ma. Highly sensitive photoacoustic acetylene detection based on differential photoacoustic cell with retro-reflection-cavity. Photoacoustics, 100467(2023).

    Daoqian Yang, Zhongjiang Chen, Da Xing. A novel needle probe for deeper photoacoustic viscoelasticity measurement[J]. Chinese Optics Letters, 2022, 20(8): 081701
    Download Citation