• Journal of Inorganic Materials
  • Vol. 35, Issue 1, 73 (2020)
Chang-Ying WANG1, Yu-Chang LU2, Cui-Lan REN2、*, Gang WANG1, and Ping HUAI2、3、*
Author Affiliations
  • 1School of Sciences, Changzhou Institute of Technology, Changzhou 213032, China
  • 2Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, 3. School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
  • 3School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
  • show less
    DOI: 10.15541/jim20190278 Cite this Article
    Chang-Ying WANG, Yu-Chang LU, Cui-Lan REN, Gang WANG, Ping HUAI. Theoretical Studies on the Modulation of the Electronic Property of Ti2CO2 by Electric Field, Strain and Charge States[J]. Journal of Inorganic Materials, 2020, 35(1): 73 Copy Citation Text show less
    References

    [1] G FIORI, F BONACCORSO, G IANNACCONE et al. Electronics based on two-dimensional materials. Nature Nanotechnology, 9, 768-779(2014).

    [2] F XIA, H WANG, D XIAO et al. Two-dimensional material nanophotonics. Nature Photonics, 8, 899-907(2014).

    [3] D AKINWANDE, N PETRONE, J HONE. Two-dimensional flexible nanoelectronics. Nature Communications, 5, 5678(2014).

    [4] W BARSOUM M. The Mn+1AXn phases: a new class of solids.. Progress in Solid State Chemistry, 28, 201-281(2000).

    [5] M LI, B LI Y, K LUO et al. Synthesis of novel MAX Phase Ti3ZnC2via A-site-element-substitution approach. Journal of Inorganic Materials, 34, 60-64(2019).

    [6] M NAGUIB, M KURTOGLU, V PRESSER et al. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Advanced Materials, 23, 4248-4253(2011).

    [7] Y ZHAO, J ZHAO. Functional group-dependent anchoring effect of titanium carbide-based MXenes for lithium-sulfur batteries: a computational study. Applied Surface Science, 412, 591-598(2017).

    [8] S SIM E, S YI G, M JE et al. Understanding the anchoring behavior of titanium carbide-based MXenes depending on the functional group in LiS batteries: a density functional theory study. Journal of Power Sources, 342, 64-69(2017).

    [9] X ZHANG, J LEI, D WU et al. A Ti-anchored Ti2CO2 monolayer (MXene) as a single-atom catalyst for CO oxidation. Journal of Materials Chemistry A, 4, 4871-4876(2016).

    [10] X ZHANG, Z ZHANG, J LI et al. Ti2CO2 MXene: a highly active and selective photocatalyst for CO2 reduction. Journal of Materials Chemistry A, 5, 12899-12903(2017).

    [11] Q ZHAO M, E REN C, Z LING et al. Flexible MXene/carbon nanotube composite paper with high volumetric capacitance. Advanced Materials, 27, 339-345(2015).

    [12] Q XU, L DING, Y WEN et al. High photoluminescence quantum yield of 18.7% by using nitrogen-doped Ti3C2 MXene quantum dots. Journal of Materials Chemistry C, 6, 6360-6369(2018).

    [13] L ZHANG, W SU, H SHU et al. Tuning the photoluminescence of large Ti3C2Tx MXene flakes. Ceramics International, 45, 11468-11474(2019).

    [14] H ZHA X, J ZHOU, Y ZHOU et al. Promising electron mobility and high thermal conductivity in Sc2CT2(T=F, OH) MXenes. Nanoscale, 8, 6110-6117(2016).

    [15] H ZHA X, C REN J, L FENG et al. Bipolar magnetic semiconductors among intermediate states during the conversion from Sc2C(OH)2 to Sc2CO2 MXene. Nanoscale, 10, 8763-8771(2018).

    [16] J ZHOU, H ZHA X, M YILDIZHAN et al. Two-dmensional hydroxyl-functionalized and carbon-deficient scandium carbide, ScCxOH, a direct band gap semiconductor. ACS Nano, 13, 1195-1203(2019).

    [17] M FAN, L WANG, Y ZHANG et al. Research progress of MXene materials in radioactive element and heavy metal ion sequestration. Scientia Sinica Chimica, 49, 27(2019).

    [18] M NAGUIB, O MASHTALIR, J CARLE et al. Two-dimensional transition metal carbides. ACS Nano, 6, 1322-1331(2012).

    [19] P URBANKOWSKI, B ANASORI, T MAKARYAN et al. Synthesis of two-dimensional titanium nitride Ti4N3(MXene). Nanoscale, 8, 11385-11391(2016).

    [20] J ZHOU, X ZHA, Y CHEN F et al. A two-dimensional zirconium carbide by selective etching of Al3C3 from nanolaminated Zr3Al3C5. Angewandte Chemie International Edition, 55, 5008-5013(2016).

    [21] J ZHOU, X ZHA, X ZHOU et al. Synthesis and electrochemical properties of two-dimensional hafnium carbide. ACS Nano, 11, 3841-3850(2017).

    [22] M NAGUIB, J HALIM, J LU et al. New two-dimensional niobium and vanadium carbides as promising materials for Li-ion batteries. Journal of the American Chemical Society, 135, 15966-15969(2013).

    [23] J HALIM, S KOTA, R LUKATSKAYA M et al. Synthesis and characterization of 2D molybdenum carbide (MXene). Advanced Functional Materials, 26, 3118-3127(2016).

    [24] M GHIDIU, M NAGUIB, C SHI et al. Synthesis and characterization of two-dimensional Nb4C3(MXene). Chemical Communications, 50, 9517-9520(2014).

    [25] Q LIU G, J JIANG X, J ZHOU et al. Synthesis and theoretical study of conductive Mo1.33CT2 MXene. Journal of Inorganic Materials, 34, 775-780(2019).

    [26] M KHAZAEI, M ARAI, T SASAKI et al. Novel electronic and magnetic properties of two-dimensional transition metal carbides and nitrides. Advanced Functional Materials, 23, 2185-2192(2013).

    [27] M LI, J LU, K LUO et al. Element replacement approach by reaction with lewis acidic molten salts to synthesize nanolaminated MAX phases and MXenes. Journal of the American Chemical Society, 141, 4730-4737(2019).

    [28] H ZHANG, G YANG, X ZUO et al. Computational studies on the structural, electronic and optical properties of graphene-like MXenes (M2CT2, M = Ti, Zr, Hf; T = O, F, OH) and their potential applications as visible-light driven photocatalysts. Journal of Materials Chemistry A, 4, 12913-12920(2016).

    [29] Y UĞUR, Ö AYBERK, P NIHANi K et al. Vibrational and mechanical properties of single layer MXene structures: a first- principles investigation. Nanotechnology, 27, 335702(2016).

    [30] P CHAKRABORTY, T DAS, D NAFDAY et al. Manipulating the mechanical properties of Ti2C MXene: effect of substitutional doping. Physical Review B, 95, 184106(2017).

    [31] Z GUO, J ZHOU, C SI et al. Flexible two-dimensional Tin+1Cn (n= 1, 2 and 3) and their functionalized MXenes predicted by density functional theories. Physical Chemistry Chemical Physics, 17, 15348-15354(2015).

    [32] E MAPASHA R, P MOLEPO M, C ANDREW R et al. Defect charge states in Si doped hexagonal boron-nitride monolayer. Journal of Physics: Condensed Matter, 28, 055501(2016).

    [33] S SALEHI, A SAFFARZADEH. Atomic defect states in monolayers of MoS2 and WS2. Surface Science, 651, 215-221(2016).

    [34] L FENG, H ZHA X, K LUO et al. Structures and mechanical and electronic properties of the Ti2CO2 MXene incorporated with neighboring elements (Sc, V, B and N). Journal of Electronic Materials, 46, 2460-2466(2017).

    [35] J LI, Y DU, C HUO et al. Thermal stability of two-dimensional Ti2C nanosheets. Ceramics International, 41, 2631-2635(2015).

    [36] Y ZHOU, G ZHAI, T YAN et al. Effects of different surface functionalization and doping on the electronic transport properties of M2CTx-M2CO2 heterojunction devices. The Journal of Physical Chemistry C, 122, 14908-14917(2018).

    [37] Y ZHANG, H ZHA X, K LUO et al. Tuning the electrical conductivity of Ti2CO2 MXene by varying the layer thickness and applying strains. The Journal of Physical Chemistry C, 123, 6802-6811(2019).

    [38] Y ZHOU, K LUO, X ZHA et al. Electronic and transport properties of Ti2CO2 MXene nanoribbons. The Journal of Physical Chemistry C, 120, 17143-17152(2016).

    [39] Y WANG C, H H, Y L GUO. Stabilities and electronic properties of vacancy-doped Ti2CO2. Computational Materials Science, 159, 127-135(2019).

    [40] G KRESSE, J FURTHMÜLLER. Efficient iterative schemes for ab initi. total-energy calculations using a plane-wave basis set. Physical Review B, 54, 11169-11186(1996).

    [41] E BLÖCHL P. Projector augmented-wave method. Physical Review B, 50, 17953-17979(1994).

    [42] P PERDEW J, K BURKE, M ERNZERHOF. Generalized gradient approximation made simple. Physical Review Letters, 77, 3865-3868(1996).

    [43] A BANDYOPADHYAY, D GHOSH, K PATI S. Effects of point defects on the magnetoelectronic structures of MXenes from first principles. Physical Chemistry Chemical Physics, 20, 4012-4019(2018).

    [44] Y XIE, C KENT P R. Hybrid density functional study of structural and electronic properties of functionalized Ti. Physical Review B, 87, 235441(2013).

    [45] F YU X, B CHENG J, B LIU Z et al. The band gap modulation of monolayer Ti2CO2 by strain. RSC Advances, 5, 30438-30444(2015).

    Chang-Ying WANG, Yu-Chang LU, Cui-Lan REN, Gang WANG, Ping HUAI. Theoretical Studies on the Modulation of the Electronic Property of Ti2CO2 by Electric Field, Strain and Charge States[J]. Journal of Inorganic Materials, 2020, 35(1): 73
    Download Citation