• Acta Photonica Sinica
  • Vol. 49, Issue 9, 0918001 (2020)
Sha AN1、2, Dan DAN1, Xiang-hua YU1, Tong PENG1、2, and Bao-li YAO1、2、*
Author Affiliations
  • 1State Key Laboratory of Transient Optics and Photonics, Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi'an 710119, China
  • 2University of Chinese Academy of Sciences, Beijing 100049, China
  • show less
    DOI: 10.3788/gzxb20204909.0918001 Cite this Article
    Sha AN, Dan DAN, Xiang-hua YU, Tong PENG, Bao-li YAO. Progress and Prospect of Research on Single-molecule Localization Super-resolution Microscopy(Invited Review)[J]. Acta Photonica Sinica, 2020, 49(9): 0918001 Copy Citation Text show less
    References

    [1] F J GIESSIBL. Atomic force microscopy-(7x7) surface by atomic force microscopy. Science, 267, 68-71(1995).

    [2] N D BROWNING, M F CHISHOLM, S J PENNYCOOK. Atomic-resolution chemical analysis using a scanning transmission electron microscope. Nature, 366, 143-146(1993).

    [3] Y SOHDA, H YAMANASHI, M FUKUDA. Scanning electron microscope. Science, 183, 119-119(2008).

    [4] D J STEPHENS, V J ALLAN. Light microscopy techniques for live cell imaging. Science, 300, 82-86(2003).

    [5] A CZIROK, P A RUPP, B J RONGISH. Multi-field 3D scanning light microscopy of early embryogenesis. Journal of Microscopy, 206, 209-217(2002).

    [6] D KOBAT, N G HORTON, C XU. In vivo two-photon microscopy to 1.6-mm depth in mouse cortex. Journal of Biomedical Optics, 16, 106014(2011).

    [7] E ABBE. A contribution to the theory of the microscope and the nature of microscopic vision. Proceedings of the Bristol Naturalists' Society, 1, 200-261(1874).

    [11] E BETZIG, A LEWIS, A HAROOTUNIAN. Near field scanning optical microscopy (NSOM):development and biophysical applications. Biophysical Journal, 49, 269-279(1986).

    [12] E BETZIG, R J CHICHESTER. Single molecules observed by near-field scanning optical microscopy. Science, 262, 1422-1425(1993).

    [13] H WANG, L SHI, G YUAN. Subwavelength and super-resolution nondiffraction beam. Applied Physics Letters, 89, 171102(2006).

    [14] X XIE, Y CHEN, K YANG. Harnessing the point-spread function for high-resolution far-field optical microscopy. Physical Review Letters, 113, 263901(2014).

    [15] Y KOZAWA, D MATSUNAGA, S SATO. Superresolution imaging via superoscillation focusing of a radially polarized beam. Optica, 5, 86-92(2018).

    [16] A MUTHUKRISHNAN, M O SCULLY, M S ZUBAIRY. Quantum microscopy using photon correlations. Journal of Optics B:Quantum and Semiclassical Optics, 6, S575-S582(2004).

    [17] J A SIDLES, J L GARBINI, W M DOUGHERTY. The classical and quantum theory of thermal magnetic noise, with applications in spintronics and quantum microscopy. Proceedings of the IEEE, 91, 799-816(2003).

    [18] J M CUI, F W SUN, X D CHEN. Quantum statistical imaging of particles without restriction of the diffraction limit. Physical Review Letters, 110, 153901(2013).

    [19] S W HELL, J WICHMANN. Breaking the diffraction resolution limit by stimulated emission:stimulated-emission-depletion fluorescence microscopy. Optics Letters, 19, 780-782(1994).

    [20] K I WILLIG, S O RIZZOLI, V WESTPHAL. STED microscopy reveals that synaptotagmin remains clustered after synaptic vesicle exocytosis. Nature, 440, 935-939(2006).

    [21] M G L GUSTAFSSON. Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy. Journal of Microscopy, 198, 82-87(2000).

    [22] M G L GUSTAFSSON. Nonlinear structured-illumination microscopy:wide-field fluorescence imaging with theoretically unlimited resolution. Proceedings of the National Academy of Sciences of the United States of America, 102, 13081-13086(2005).

    [23] D DAN, M LEI, B YAO. DMD-based LED-illumination super-resolution and optical sectioning microscopy. Scientific Reports, 3, 1116(2013).

    [25] L SCHERMELLEH, P M CARLTON, S HAASE. Subdiffraction multicolor imaging of the nuclear periphery with 3D structured illumination microscopy. Science, 320, 1332-1336(2008).

    [26] E BETZIG, G H PATTERSON, R SOUGRAT. Imaging intracellular fluorescent proteins at nanometer resolution. Science, 313, 1642-1645(2006).

    [27] M J RUST, M BATES, X ZHUANG. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nature Methods, 3, 793-796(2006).

    [28] S T HESS, T P K GIRIRAJAN, M D MASON. Ultra-high resolution imaging by fluorescence photoactivation localization microscopy. Biophysical Journal, 91, 4258-4272(2006).

    [29] M HEILEMANN, S VAN DE LINDE, M SCHVTTPELZ. Subdiffraction-resolution fluorescence imaging with conventional fluorescent probes. Angewandte Chemie International Edition, 47, 6172-6176(2008).

    [30] S VAN D E LINDE, A LÖSCHBERGER, T KLEIN. Direct stochastic optical reconstruction microscopy with standard fluorescent probes. Nature Protocols, 6, 991-1009(2011).

    [31] A YILDIZ, J N FORKEY, S A MCKINNEY. Myosin V walks hand-over-hand:single fluorophore imaging with 1.5-nm localization. Science, 300, 2061-2065(2003).

    [32] D AQUINO, A SCHÖNLE, C GEISLER. Two-color nanoscopy of three-dimensional volumes by 4Pi detection of stochastically switched fluorophores. Nature Methods, 8, 353-359(2011).

    [33] A PERTSINIDIS, Y ZHANG, S CHU. Subnanometre single-molecule localization, registration and distance measurements. Nature, 466, 647-651(2010).

    [34] N C SHANER, G H PATTERSON, M W DAVIDSON. Advances in fluorescent protein technology. Journal of Cell Science, 120, 4247-4260(2007).

    [35] Q ZHENG, M F JUETTE, S JOCKUSCH. Ultra-stable organic fluorophores for single-molecule research. Chemical Society Reviews, 43, 1044-1056(2014).

    [36] K A LIDKE, B RIEGER, T M JOVIN. Superresolution by localization of quantum dots using blinking statistics. Optics Express, 13, 7052-7062(2005).

    [37] T J GOULD, V V VERKHUSHA, S T HESS. Imaging biological structures with fluorescence photoactivation localization microscopy. Nature Protocols, 4, 291-308(2009).

    [38] G T DEMPSEY, M BATES, W E KOWTONIUK. Photoswitching mechanism of cyanine dyes. Journal of the American Chemical Society, 131, 18192-18193(2009).

    [39] M NIRMAL, B O DABBOUSI, M G BAWENDI. Fluorescence intermittency in single cadmium selenide nanocrystals. Nature, 383, 802-804(1996).

    [40] E ABBE. Beiträge zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung. Archiv für Mikroskopische Anatomie, 9, 413-418(1873).

    [41] E BETZIG. Proposed method for molecular optical imaging. Optics Letters, 20, 237-239(1995).

    [42] M WU, B HUANG, M GRAHAM. Coupling between clathrin-dependent endocytic budding and F-BAR-dependent tubulation in a cell-free system. Nature Cell Biology, 12, 902-908(2010).

    [43] M BATES, G T DEMPSEY, K H CHEN. Multicolor super-resolution fluorescence imaging via multi-parameter fluorophore detection. ChemPhysChem, 13, 99-107(2012).

    [44] E LUBECK, L CAI. Single-cell systems biology by super-resolution imaging and combinatorial labeling. Nature Methods, 9, 743-748(2012).

    [46] M BATES, B HUANG, G T DEMPSEY. Multicolor super-resolution imaging with photo-switchable fluorescent probes. Science, 317, 1749-1753(2007).

    [47] H SHROFF, C G GALBRAITH, J A GALBRAITH. Dual-color superresolution imaging of genetically expressed probes within individual adhesion complexes. Proceedings of the National Academy of Sciences of the United States of America, 104, 20308-20313(2007).

    [48] B HUANG, W WANG, M BATES. Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy. Science, 319, 810-813(2008).

    [49] S R P PAVANI, M A THOMPSON, J S BITEEN. Three-dimensional, single-molecule fluorescence imaging beyond the diffraction limit by using a double-helix point spread function. Proceedings of the National Academy of Sciences of the United States of America, 106, 2995-2999(2009).

    [50] S JIA, J C VAUGHAN, X ZHUANG. Isotropic three-dimensional super-resolution imaging with a self-bending point spread function. Nature Photonics, 8, 302-306(2014).

    [51] S RAM, P PRABHAT, E S WARD. Improved single particle localization accuracy with dual objective multifocal plane microscopy. Optics Express, 17, 6881-6898(2009).

    [52] G SHTENGEL, J A GALBRAITH, C G GALBRAITH. Interferometric fluorescent super-resolution microscopy resolves 3D cellular ultrastructure. Proceedings of the National Academy of Sciences of the United States of America, 106, 3125-3130(2009).

    [53] J XU, K F TEHRANI, P KNER. Multicolor 3D super-resolution imaging by quantum dot stochastic optical reconstruction microscopy. ACS Nano, 9, 2917-2925(2015).

    [54] R JUNGMANN, C STEINHAUER, M SCHEIBLE. Single-molecule kinetics and super-resolution microscopy by fluorescence imaging of transient binding on DNA origami. Nano Letters, 10, 4756-4761(2010).

    [55] S STRAUSS, P C NICKELS, M T STRAUSS. Modified aptamers enable quantitative sub-10-nm cellular DNA-PAINT imaging. Nature Methods, 15, 685-688(2018).

    [56] J SCHNITZBAUER, M T STRAUSS, T SCHLICHTHAERLE. Super-resolution microscopy with DNA-PAINT. Nature Protocols, 12, 1198-1228(2017).

    [57] R JUNGMANN, M S AVENDAÑO, J B WOEHRSTEIN. Multiplexed 3D cellular super-resolution imaging with DNA-PAINT and Exchange-PAINT. Nature Methods, 11, 313-318(2014).

    [58] F BALZAROTTI, Y EILERS, K C GWOSCH. Nanometer resolution imaging and tracking of fluorescent molecules with minimal photon fluxes. Science, 355, 606-612(2017).

    [59] Y EILERS, H TA, K C GWOSCH. MINFLUX monitors rapid molecular jumps with superior spatiotemporal resolution. Proceedings of the National Academy of Sciences of the United States of America, 115, 6117-6122(2018).

    [60] K C GWOSCH, J K PAPE, F BALZAROTTI. MINFLUX nanoscopy delivers 3D multicolor nanometer resolution in cells. Nature Methods, 17, 217-224(2020).

    [61] M K CHEEZUM, W F WALKER, W H GUILFORD. Quantitative comparison of algorithms for tracking single fluorescent particles. Biophysical Journal, 81, 2378-2388(2001).

    [62] A J BERGLUND, M D MCMAHON, J J MCCLELLAND. Fast, bias-free algorithm for tracking single particles with variable size and shape. Optics Express, 16, 14064-14075(2008).

    [63] R HENRIQUES, M LELEK, E F FORNASIERO. QuickPALM:3D real-time photoactivation nanoscopy image processing in ImageJ. Nature Methods, 7, 339-340(2010).

    [65] R E THOMPSON, D R LARSON, W W WEBB. Precise nanometer localization analysis for individual fluorescent probes. Biophysical Journal, 82, 2775-2783(2002).

    [66] R J OBER, S RAM, E S WARD. Localization accuracy in single-molecule microscopy. Biophysical Journal, 86, 1185-1200(2004).

    [67] C S SMITH, N JOSEPH, B RIEGER. Fast, single-molecule localization that achieves theoretically minimum uncertainty. Nature Methods, 7, 373-375(2010).

    [68] F HUANG, S L SCHWARTZ, J M BYARS. Simultaneous multiple-emitter fitting for single molecule super-resolution imaging. Biomedical Optics Express, 2, 1377-1393(2011).

    [69] E J CANDÈS, J ROMBERG, T TAO. Robust uncertainty principles:Exact signal reconstruction from highly incomplete frequency information. IEEE Transactions on Information Theory, 52, 489-509(2006).

    [70] L ZHU, W ZHANG, D ELNATAN. Faster STORM using compressed sensing. Nature Methods, 9, 721-723(2012).

    [71] S J HOLDEN, S UPHOFF, A N KAPANIDIS. DAOSTORM:an algorithm for high-density super-resolution microscopy. Nature Methods, 8, 279-280(2011).

    [72] H BABCOCK, Y M SIGAL, X ZHUANG. A high-density 3D localization algorithm for stochastic optical reconstruction microscopy. Optical Nanoscopy, 1, 6(2012).

    [73] T QUAN, H ZHU, X LIU. High-density localization of active molecules using structured sparse model and bayesian information criterion. Optics Express, 19, 16963-16974(2011).

    [74] Y WANG, T QUAN, S ZENG. PALMER:a method capable of parallel localization of multiple emitters for high-density localization microscopy. Optics Express, 20, 16039-16049(2012).

    [75] J MIN, C VONESCH, H KIRSHNER. FALCON:fast and unbiased reconstruction of high-density super-resolution microscopy data. Scientific Reports, 4, 4577(2015).

    [76] E A MUKAMEL, H BABCOCK, X ZHUANG. Statistical deconvolution for superresolution fluorescence microscopy. Biophysical Journal, 102, 2391-2400(2012).

    [77] S COX, E ROSTEN, J MONYPENNY. Bayesian localization microscopy reveals nanoscale podosome dynamics. Nature Methods, 9, 195-200(2012).

    [78] Y S HU, X NAN, P SENGUPTA. Accelerating 3B single-molecule super-resolution microscopy with cloud computing. Nature Methods, 10, 96-97(2013).

    [79] F XU, M ZHANG, W HE. Live cell single molecule-guided Bayesian localization super resolution microscopy. Cell Research, 27, 713-716(2017).

    [80] A L MATTHEYSES, S M SIMON, J Z RAPPOPORT. Imaging with total internal reflection fluorescence microscopy for the cell biologist. Journal of Cell Science, 123, 3621-3628(2010).

    [81] M TOKUNAGA, N IMAMOTO, K SAKATA-SOGAWA. Highly inclined thin illumination enables clear single-molecule imaging in cells. Nature Methods, 5, 159-161(2008).

    [82] N A HOSNY, M SONG, J T CONNELLY. Super-resolution imaging strategies for cell biologists using a spinning disk microscope. Public Library of Science One, 8, e74604(2013).

    [83] X CHEN, Z ZENG, H WANG. Three-dimensional multimodal sub-diffraction imaging with spinning-disk confocal microscopy using blinking/fluctuating probes. Nano Research, 8, 2251-2260(2015).

    [84] F SCHUEDER, J LARA-GUTIÉRREZ, B J BELIVEAU. Multiplexed 3D super-resolution imaging of whole cells using spinning disk confocal microscopy and DNA-PAINT. Nature Communications, 8, 2090(2017).

    [85] J HUISKEN, J SWOGER, F DEL BENE. Optical sectioning deep inside live embryos by selective plane illumination microscopy. Science, 305, 1007-1009(2004).

    [86] R M POWER, J HUISKEN. A guide to light-sheet fluorescence microscopy for multiscale imaging. Nature Methods, 14, 360-373(2017).

    [87] H JIA, X YU, Y YANG. Axial resolution enhancement of light-sheet microscopy by double scanning of Bessel beam and its complementary beam. Journal of Biophotonics, 12, e201800094(2019).

    [88] A K GUSTAVSSON, P N PETROV, M Y LEE. 3D single-molecule super-resolution microscopy with a tilted light sheet. Nature Communications, 9, 123(2018).

    [89] Y WU, A KUMAR, C SMITH. Reflective imaging improves spatiotemporal resolution and collection efficiency in light sheet microscopy. Nature Communications, 8, 1452(2017).

    [90] B C CHEN, W R LEGANT, K WANG. Lattice light-sheet microscopy:imaging molecules to embryos at high spatiotemporal resolution. Science, 346, 1257998(2014).

    [91] B YANG, X CHEN, Y WANG. Epi-illumination SPIM for volumetric imaging with high spatial-temporal resolution. Nature Methods, 16, 501-504(2019).

    [92] R GALLAND, G GRENCI, A ARAVIND. 3D high-and super-resolution imaging using single-objective SPIM. Nature Methods, 12, 641-644(2015).

    [93] C G COATES, D J DENVIR, N G MCHALE. Optimizing low-light microscopy with back-illuminated electron multiplying charge-coupled device:enhanced sensitivity, speed, and resolution. Journal of Biomedical Optics, 9, 1244-1253(2004).

    [94] I RASNIK, T FRENCH, K JACOBSON. Electronic cameras for low-light microscopy. Methods in Cell Biology, 81, 219-249(2007).

    [95] FOWLER B, LIU C, MIMS S, et al. A 5.5 Mpixel 100 framessec wide dynamic range low noise CMOS image sens f scientific applications[C]. Senss, Cameras, Systems f IndustrialScientific Applications XI, International Society f Optics Photonics, 2010, 7536: 753607.

    [96] C COATES. New sCMOS vs. current microscopy cameras. Biophotonics International, 18, 24-27(2011).

    [97] M S ROBBINS, B J HADWEN. The noise performance of electron multiplying charge-coupled devices. IEEE Transactions on Electron Devices, 50, 1227-1232(2003).

    [98] P ALMADA, S CULLEY, R HENRIQUES. PALM and STORM:Into large fields and high-throughput microscopy with sCMOS detectors. Methods, 88, 109-121(2015).

    [99] S LIU, M J MLODZIANOSKI, Z HU. sCMOS noise-correction algorithm for microscopy images. Nature Methods, 14, 760-761(2017).

    [100] Z L HUANG, H ZHU, F LONG. Localization-based super-resolution microscopy with an sCMOS camera. Optics Express, 19, 19156-19168(2011).

    [101] Y YIN, W T LEE, E ROTHENBERG. Ultrafast data mining of molecular assemblies in multiplexed high-density super-resolution images. Nature Communications, 10, 119(2019).

    [102] F HUANG, T M P HARTWICH, F E RIVERA-MOLINA. Video-rate nanoscopy using sCMOS camera-specific single-molecule localization algorithms. Nature Methods, 10, 653-658(2013).

    [103] F HUANG, G SIRINAKIS, E S ALLGEYER. Ultra-high resolution 3D imaging of whole cells. Cell, 166, 1028-1040(2016).

    [104] S T HESS, T J GOULD, M V GUDHETI. Dynamic clustered distribution of hemagglutinin resolved at 40 nm in living cell membranes discriminates between raft theories. Proceedings of the National Academy of Sciences of the United States of America, 104, 17370-17375(2007).

    [105] S A JONES, S H SHIM, J HE. Fast, three-dimensional super-resolution imaging of live cells. Nature Methods, 8, 499-505(2011).

    [106] H SHROFF, C G GALBRAITH, J A GALBRAITH. Live-cell photoactivated localization microscopy of nanoscale adhesion dynamics. Nature Methods, 5, 417-423(2008).

    [107] B HUANG, S A JONES, B BRANDENBURG. Whole-cell 3D STORM reveals interactions between cellular structures with nanometer-scale resolution. Nature Methods, 5, 1047-1052(2008).

    [108] S ADHIKARI, J MOSCATELLI, E M SMITH. Single-molecule localization microscopy and tracking with red-shifted states of conventional BODIPY conjugates in living cells. Nature Communications, 10, 3400(2019).

    [109] S AN, K F ZIEGLER, P ZHANG. Axial plane single-molecule super-resolution microscopy of whole cells. Biomedical Optics Express, 11, 461-479(2020).

    [110] F C ZANACCHI, Z LAVAGNINO, M P DONNORSO. Live-cell 3D super-resolution imaging in thick biological samples. Nature Methods, 8, 1047-1049(2011).

    [111] M J MLODZIANOSKI, P J CHENG-HATHAWAY, S M BEMILLER. Active PSF shaping and adaptive optics enable volumetric localization microscopy through brain sections. Nature Methods, 15, 583-586(2018).

    [112] P BON, J LINARESLOYEZ, M FEYEUX. Self-interference 3D super-resolution microscopy for deep tissue investigations. Nature Methods, 15, 449-454(2018).

    [113] F XU, D MA, K P MACPHERSON. Three-dimensional nanoscopy of whole cells and tissues with in situ point spread function retrieval. Nature Methods, 17, 531-540(2020).

    [114] J XU, H MA. Super-resolution imaging reveals the evolution of higher-order chromatin folding in early carcinogenesis. Nature Communications, 11, 1899(2020).

    [115] Superresolution imaging of chemical synapses in the brain. Neuron, 68, 843-856(2010).

    [116] Rapid sequential in situ multiplexing with DNA exchange imaging in neuronal cells and tissues. Nano Letters, 17, 6131-6139(2017).

    [117] Lightsheet localization microscopy enables fast, large-scale, and three-dimensional super-resolution imaging. Communications Biology, 2, 177(2019).

    [118] Rapid single-wavelength lightsheet localization microscopy for clarified tissue. Nature Communications, 10, 4762(2019).

    [119] Automated highly multiplexed super-resolution imaging of protein nano-architecture in cells and tissues. Nature Communications, 11, 1552(2020).

    [120] Molecular resolution imaging by repetitive optical selective exposure. Nature Methods, 16, 1114-1118(2019).

    [121] Localization microscopy at doubled precision with patterned illumination. Nature Methods, 17, 59-63(2020).

    [122] Correlated cryogenic photoactivated localization microscopy and cryo-electron tomography. Nature Methods, 11, 737-739(2014).

    [123] Cryogenic optical localization provides 3D protein structure data with Angstrom resolution. Nature Methods, 14, 141-144(2017).

    CLP Journals

    [1] Peng GAO, Xiang FANG, Kai WEN, Yunze LEI, Zihan XIONG, Jiaoyue LI, Xing LIU, Juanjuan ZHENG, Sha AN. Large-field Structured Illumination Microscopy(Invited)[J]. Acta Photonica Sinica, 2022, 51(8): 0851506

    Sha AN, Dan DAN, Xiang-hua YU, Tong PENG, Bao-li YAO. Progress and Prospect of Research on Single-molecule Localization Super-resolution Microscopy(Invited Review)[J]. Acta Photonica Sinica, 2020, 49(9): 0918001
    Download Citation