• Journal of Innovative Optical Health Sciences
  • Vol. 15, Issue 1, 2142007 (2022)
[in Chinese]1、2, [in Chinese]3, [in Chinese]1, [in Chinese]1, [in Chinese]4, [in Chinese]4, [in Chinese]5, [in Chinese]5, [in Chinese]5、*, [in Chinese]1, and [in Chinese]5、6、7
Author Affiliations
  • 1H. Buniatyan Institute of Biochemistry, National Academy of Sciences of Armenia, 5/1 Paruir Sevak Street, Yerevan 0014, Armenia
  • 2INSERM U1204, Universite d'Evry val d'Essonne–Universite Paris-Saclay, 1 Rue du Pere Jarlan, Batiment Maupertuis, 91025 Evry-Courcouronnes, France
  • 3SPC "Armbiotechnology", National Academy of Sciences of Armenia, 14 Gyurjyan Street, Yerevan 0056, Armenia
  • 4B. I. Stepanov Institute of Physics, National Academy of Sciences of Belarus, 68-2 Nezavisimosti Avenue, Minsk 220072, Belarus
  • 5Science Medical Center, Saratov State University, 83 Astrakhanskaya Street, Saratov 410012, Russia
  • 6Laboratory of Laser Molecular Imaging and Machine Learning (LMIML), National Research Tomsk State University, 36 Lenin Avenue, Tomsk 634050, Russia
  • 7Laboratory of Laser Diagnostics of Technical and Living Systems, Institute of Precision Mechanics and Control, Russian Academy of Sciences, Saratov 410028, Russia
  • show less
    DOI: 10.1142/s1793545821420074 Cite this Article
    [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese]. Meso-substituted cationic 3- and 4-N-Pyridylporphyrins and their Zn(II) derivatives for antibacterialphotodynamic therapy[J]. Journal of Innovative Optical Health Sciences, 2022, 15(1): 2142007 Copy Citation Text show less
    References

    [1] World Health Organization, "WHO Global Strategy for the Containment of Antimicrobial Resistance," Report No. WHO/CDS/CSR/DRS/2001.2, Department of Communicable Disease Surveillance and Response, WHO, Geneva, https://www.who.int/csr/resources/publications/drugresist/EGlobalStrat.pdf (2001).

    [2] J. O'Neill, "Tackling Drug-Resistant Infections Globally: Final Report and Recommendations," The Review on Antimicrobial Resistance, May, https://www.biomerieuxconnection.com/wp-content/uploads/2018/04/Tackling-Drug-Resistant-Infections-Globally-Final-Report-and-Recommendations.pdf (2016).

    [3] M. Wainwright, "Photodynamic antimicrobial chemotherapy (PACT)," J. Antimicrob. Chemother. 42(1), 13–28 (1998).

    [4] T. Maisch, S. Hackbarth, J. Regensburger, A. Felgentrager, W. Baumler, M. Landthaler, B. R€oder, "Photodynamic inactivation of multiresistant bacteria (PIB) - a new approach to treat superficial infections in the 21st century," J. Dtsch. Dermatol. Ges. 9(5), 360–366 (2011).

    [5] M. R. Hamblin, T.Hasan, "Photodynamic therapy: a new antimicrobial approach to infectious disease?," Photochem. Photobiol. Sci. 3(5), 436–450 (2004).

    [6] G. Jori, "Photodynamic therapy of microbial infections: state of the art and perspectives," J. Environ. Pathol. Toxicol. Oncol. 25(1–2), 505–519 (2006).

    [7] Z. Malik, J. Hanania, Y. Nitzan, "Bactericidal effects of photoactivated porphyrins - an alternative approach to antimicrobial drugs," J. Photochem. Photobiol. B 5(3–4), 281–293 (1990).

    [8] A. Wiehe, J. M. O'Brien, M. O. Senge, "Trends and targets in antiviral phototherapy," Photochem. Photobiol. Sci. 18(11), 2565–2612 (2019). doi:10.1039/c9pp00211a.

    [9] A. Michaeli, J. Feitelson, "Reactivity of singlet oxygen toward amino acids and peptides," Photochem. Photobiol. 59(3), 284–289 (1994).

    [10] G. Stark, "Functional consequences of oxidative membrane damage," J. Membr. Biol. 205, 1–16 (2005).

    [11] J. L. Ravanat, P. Di Mascio, G. R. Martinez, M. H. G. Medeiros, J. Cadet, "Singlet oxygen induces oxidation of cellular DNA," J. Biol. Chem. 275, 40601–40604 (2000).

    [12] F. Vatansever, W. C. M. A. de Melo, P. Avci, D. Vecchio, M. Sadasivam, A. Gupta, R. Chandran, M. Karimi, N. A. Parizotto, R. Yin, G. P. Tegos, M. R. Hamblin, "Antimicrobial strategies centered around reactive oxygen species - bactericidal antibiotics, photodynamic therapy, and beyond," FEMS Microbiol. Rev. 37(6), 955–989 (2013).

    [13] A. Tavares, C. M. B. Carvalho, M. A. Faustino, M. G. P. M. S. Neves, J. P. C. Tome, A. C. Tome, J. A. S. Cavaleiro, ^A. Cunha, N. C. M. Gomes, E. Alves, A. Almeida, "Antimicrobial photodynamic therapy: Study of bacterial recovery viability and potential development of resistance after treatment," Mar. Drugs 8(1), 91–105 (2010). doi: 10.3390/md8010091.

    [14] F. Le Guern, T.-S. Ouk, I. Yerzhan, Y. Nurlykyz, P. Arnoux, C. Frochot, S. Leroy-Lhez, V. Sol, "Photophysical and bactericidal properties of pyridinium and imidazolium porphyrins for photodynamic antimicrobial chemotherapy," Molecules 26, 1122 (2021). doi: 10.3390/molecules26041122.

    [15] A. Makowski, W. Wardas, "Photocatalytic degradation of toxins secreted to water by cyanobacteria and unicellular algae and photocatalytic degradation of the cells of selected microorganisms," Curr. Top. Biophys. 25(1), 19–25 (2001).

    [16] S. Moghnie, A. Tovmasyan, J. Craik, I. Batinic-Haberle, L. Benov, "Cationic amphiphilic Znporphyrin with high antifungal photodynamic potency," Photochem. Photobiol. Sci. 16(11), 1709– 1716 (2017). doi:10.1039.c7pp00143f.

    [17] O. Viana, M. Ribeiro, A. Rodas, J. Reboucas, A. Fontes, B. Santos, "Comparative study on the e±ciency of the photodynamic inactivation of Candida albicans using CdTe quantum dots, Zn(II) porphyrin and their conjugates as photosensitizers," Molecules 20, 8893–8912 (2015).

    [18] A. V. Teles, T. M. A. Oliveira, F. C. Bezerra, L. Alonso, A. Alonso, I. E. Borissevitch, P. J. Goncalves, G. R. L. Souza, "Photodynamic inactivation of Bovine herpesvirus type 1 (BoHV-1) by porphyrins," J. Gen. Virol. 99(9), 1301–1306 (2018).

    [19] C. G. Andrade, R. C. B. Q. Figueiredo, K. R. C. Ribeiro, L. I. O. Souza, J. F. Sarmento-Neto, J. S. Reboucas, B. S. Santos, M. S. Ribeiro, L. B. Carvalho, A. Fontes, "Photodynamic effect of zinc porphyrin on the promastigote and amastigote forms of Leishmania braziliensis," Photochem. Photobiol. Sci. 17, 482–490 (2018).

    [20] T. H. S. Souza, C. G. Andrade, F. V. Cabral, J. F. Sarmento-Neto, J. S. Reboucas, B. S. Santos, M. S. Ribeiro, R. C. B. Q. Figueiredo, A. Fontes, "E±cient photodynamic inactivation of Leishmania parasites mediated by lipophilic water-soluble Zn(II) porphyrin ZnTnHex-2-PyP4t," Biochim. Biophys. Acta - Gen. Subj. 1865, 129897 (2021)

    [21] Y. Nitzan, M. Gutterman, Z. Malik, B. Ehrenberg, "Inactivation of Gram-negative bacteria by photosensitized porphyrins," Photochem. Photobiol. 55, 89–96 (1992).

    [22] G. Bertoloni, F. Rossi, G. Valduga, G. Jori, H. Ali, J. E. Vanlier, "Photosensitizing activity of waterand lipid-soluble phthalocyanines on prokaryotic and eukaryotic microbial-cells," Microbios 71, 33–46 (1992).

    [23] N. A. Romanova, L. Y. Brovko, L. Moore, E. Pometun, A. P. Savitsky, N. N. Ugarova, M. W. Gri±ths, "Assessment of photodynamic destruction of Escherichia coli O157: H7 and Listeria monocytogenes by using ATP bioluminescence," Appl. Environ. Microbiol. 69, 6393–6398 (2003).

    [24] X. Ragàs, D. Sanchez-García, R. Ruiz-Gonzalez, T. Dai, M. Agut, M. R. Hamblin, S. Nonell, "Cationic porphycenes as potential photosensitizers for antimicrobial photodynamic therapy," Med. Chem. 53(21), 7796–7803 (2010). doi: 10.1021/jm1009555.

    [25] R. Bonnett, D. Buckley, T. Burrow, A. Galia, B. Saville, S. Songca, "Photobactericidal materials based on porphyrins and phthalocyanines," J. Mater. Chem. 3, 323–324 (1993).

    [26] T. A. Dahl, W. R. Midden, P. E. Hartman, "Comparison of killing of gram-negative and gram-positive bacteria by pure singlet oxygen," J. Bacteriol. 171(4), 2188–2194 (1989).

    [27] M. R. Hamblin, D. A. O'Donnell, N. Murthy, K. Rajagopalan, N. Michaud, M. E. Sherwood, T. Hasan, "Polycationic photosensitizer conjugates: effects of chain length and Gram classification on the photodynamic inactivation of bacteria," J. Antimicrob. Chemother. 49(6), 941–951 (2002).

    [28] K. Kano, T. Nakajima, M. Takei, S. Hashimoto, "Self-aggregation of cationic porphyrin in water," Bull. Chem. Soc. Jpn. 60(4), 1281–1287 (1987).

    [29] A. Minnock, D. I. Vernon, J. Schofield, J. Gri±ths, J. H. Parish, S. B. Brown, "Mechanism of uptake of a cationic water-soluble pyridinium zinc phthalocyanine across the outer membrane of Escherichia coli," Antimicrob. Agents Chemother. 44, 522–527 (2000).

    [30] E. Reddi, M. Ceccon, G. Valduga, G. Jori, J. C. Bommer, F. Elisei, L. Latterini, U. Mazzucato, "Photophysical properties and antibacterial activity of meso-substituted cationic porphyrins," Photochem. Photobiol. 75, 462–470 (2002).

    [31] E. Alves, L. Costa, C. M. B. Carvalho, J. P. C. Tome, M. A. Faustino, M. G. P. M. S. Neves, A. C. Tome, J. A. S. Cavaleiro, ^A. Cunha, A. Almeida, "Charge effect on the photoinactivation of Gramnegative and Gram-positive bacteria by cationic meso-substituted porphyrins," BMC Microbiol. 9, 70 (2009).

    [32] M. Merchat, G. Bertolini, P. Giacomini, A. Villanueva, G. Jori, "Meso-substituted cationic porphyrins as e±cient photosensitizers of grampositive and gram-negative bacteria," J. Photochem. Photobiol. B 32(3), 153–157 (1996).

    [33] M. Merchat, J. D. Spikes, G. Bertoloni, G. Jori, "Studies on the mechanism of bacteria photosensitization by meso-substituted cationic porphyrins," J. Photochem. Photobiol. B 35(3), 149–157 (1996).

    [34] M. Jemli, Z. Alouini, S. Sabbahi, M. Gueddari, "Destruction of fecal bacteria in wastewater by three photosensitizers," J. Environ. Monit. 4(4), 511–516 (2002).

    [35] M. B. Spesia, D. Lazzeri, L. Pascual, M. Rovera, E. N. Durantini, "Photoinactivation of Escherichia coli using porphyrin derivatives with different number of cationic charges," FEMS Immunol. Med. Microbiol. 44(3), 289–295 (2005).

    [36] S. Banfi, E. Caruso, L. Buccafurni, V. Battini, S. Zazzaron, P. Barbieri, V. Orlandi, "Antibacterial activity of tetraaryl-porphyrin photosensitizers: An in vitro study on Gram negative and Gram positive bacteria," J. Photochem. Photobiol. B 85(1), 28–38 (2006).

    [37] A. Tovmasyan, L. Sahakyan, G. Gasparyan, N. Babayan, G. Gyulkhandanyan, R. Ghazaryan, "New water-soluble cationic metalloporphyrins as potential anticancer agents," J. Biomol. Struct. Dyn. 24(6), 682–683 (2007).

    [38] A. G. Tovmasyan, N. S. Babayan, L. A. Sahakyan, A. G. Shahkhatuni, G. H. Gasparyan, R. M. Aroutiounian, R. K. Ghazaryan, "Synthesis and in vitro anticancer activity of water-soluble cationic pyridylporphyrins and their metallocomplexes," J. Porphyr. Phthalocyan. 12(10), 1100–1110 (2008). doi: 10.1142/S1088424608000467.

    [39] M. Thomas, J. D. Craik, A. Tovmasyan, I. Batinic-Haberle, L. T. Benov, "Amphiphilic cationic Znporphyrins with high photodynamic antimicrobial activity," Future Microbiol. 10, 709–724 (2015). doi: 10.2217/fmb.14.148.

    [40] K. B. Guterres, G. G. Rossi, M. M. K. A. de Campos, K. S. Moreira, T. A. L. Burgo, B. A. Iglesias, "Metal center ion effects on photoinactivating rapidly growing mycobacteria using water-soluble tetra-cationic porphyrins," BioMetals. 33, 269–282 (2020).

    [41] K. Alenezi, A. Tovmasyan, I. Batinic-Haberle, L. T. Benov, "Optimizing Zn porphyrin-based photosensitizers for e±cient antibacterial photodynamic therapy," Photodiagnosis Photodyn. Ther. 17, 154–159 (2017).

    [42] F. Fayyaz, M. Rassa, R. Rahimi, "Antibacterial photoactivity and thermal stability of tetra-cationic porphyrins immobilized on cellulosic fabrics," Photochem. Photobiol. 97, 385–397 (2021).

    [43] K. R. Weishaupt, C. J. Gomer, T. J. Dougherty, "Identification of singlet oxygen as cytotoxic agent in photoinactivation of a murine tumor," Cancer Res. 36, 2326–2329 (1976).

    [44] S. Nonell, S. E. Braslavsky, "Time-resolved singlet oxygen detection," Methods in Enzymology, L. Packer, H. Sies, Eds., Vol. 319, pp. 37–49, Academic Press, San Diego (2000).

    [45] M. Klausen, M. Ucuncu, M. Bradley, "Design of photosensitizing agents for targeted antimicrobial photodynamic therapy," Molecules 25(22), 5239 (2020).

    [46] R. K. Ghazaryan, L. A. Sahakyan, A. G. Tovmasyan, G. V. Gyulkhandanyan, S. K. Yericyan, "Metallocomplexes of meso-tetra-pyridylporphyrins' derivatives with simultaneously fungicide and growth stimulating activities," Patent of the Republic of Armenia, No. 1716 A2 (2006).

    [47] A. Tovmasyan, T. Weitner, H. Sheng, M. Lu, Z. Rajic, D. S. Warner, I. Spasojevic, J. S. Reboucas, L. Benov, I. Batinic-Haberle, "Differential coordination demands in Fe versus Mn water-soluble cationic metalloporphyrins translate into remarkably different aqueous redox chemistry and biology," Inorg. Chem. 52(10), 5677–5691 (2013).

    [48] A. S. Stasheuski, V. A. Galievsky, V. N. Knyukshto, R. K. Ghazaryan, A. G. Gyulkhandanyan, G. V. Gyulkhandanyan, B. M. Dzhagarov, "Water-soluble pyridyl porphyrins with amphiphilic N-substituents: Fluorescent properties and photosensitized formation of singlet oxygen," J. Appl. Spectrosc. 80(6), 813–823 (2014).

    [49] V. A. Galievsky, A. S. Stasheuski, V. V. Kiselyov, A. I. Shabusov, M. V. Belkov, B. M. Dzhagarov, "Laser NIR lifetime spectrometer with nanosecond time resolution," Instrum. Exp. Tech. 53, 568–574 (2010).

    [50] S. V. Lepeshkevich, A. S. Stasheuski, M. V. Parkhats, V. A. Galievsky, B. M. Dzhagarov, "Does photodissociation of molecular oxygen from myoglobin and hemoglobin yield singlet oxygen," J. Photochem. Photobiol. B, Biol. 120, 130–141 (2013).

    [51] P. K. Frederiksen, S. P. McIlroy, C. B. Nielsen, L. Nikolajsen, E. Skovsen, M. Jrgensen, K. V. Mikkelsen, P. R. Ogilby, "Two-photon photosensitized production of singlet oxygen in water," J. Am. Chem. Soc. 127, 255–261 (2005).

    [52] G. V. Gyulkhandanyan, M. H. Paronyan, A. S. Hovsepyan, R. K. Ghazaryan, A. G. Tovmasyan, A. G. Gyulkhandanyan, A. G. Gyulkhandanyan, G. V. Amelyan, "Photodynamic inactivation of Gram (- and Gram (+) microorganisms by cationic porphyrins and metalloporphyrins," Proc. SPIE 7380, 73803I-1–73803I-7 (2009).

    [53] A. A. Miles, S. S. Misra, J. O. Irwin, "The estimation of bactericidal power of the blood," J. Hyg. (Lond.) 38, 732–749 (1938).

    [54] M. V. Korchenova, E. S. Tuchina, V. Y. Shvayko, A. G. Gulkhandanyan, A. A. Zakoyan, R. K. Ghazaryan, G. V. Gulkhandanyan, B. M. Dzhagarov, V. V. Tuchin, "Photodynamic effect of radiation with the wavelength 405 nm on the cells of microorganisms sensitised by metalloporphyrin compounds," Quantum Electron. 46(6), 521–527 (2016).

    [55] M. Gouterman, "Optical spectra and electronic structure of porphyrins and related rings," The Porphyrins, Volume III: Physical Chemistry, Part A, D. Dolphin, Ed., pp. 1–165, Academic Press, New York (1978).

    [56] B. M. Dzhagarov, G. P. Gurinovich, V. E. Novichenkov, K. I. Salokhiddinov, A. M. Shul'ga, V. A. Ganzha, Khim. Fiz. 6(8), 1069–1078 (1987).

    [57] J. M. Fernandez, M. D. Bilgin, L. I. Grossweine, "Singlet oxygen generation by photodynamic agents," J. Photochem. Photobiol. B 37(1–2), 131–140 (1997).

    [58] M. G. Mokwena, C. A. Kruger, M. Ivan, H. Abrahamse, "A review of nanoparticle photosensitizer drug delivery uptake systems for photodynamic treatment of lung cancer," Photodiagnosis Photodyn. Ther. 22, 147–154 (2018).

    [59] V. N. Knyukshto, A. S. Starukhin, M. M. Kruk, A. V. Gorskii, "Radiative deactivation of lowest singlet and triplet excited states of water-soluble porphyrins," J. Appl. Spectrosc. 84(6), 960–965 (2018).

    [60] R. Bonnett, B. D. Djelal, A. Nguyen, "Physical and chemical studies related to the development of m-THPC (FOSCAN) for the photodynamic therapy (PDT) of tumours," J. Porphyr. Phthalocyanines 5 (8), 652–661 (2001).

    [61] P. G. Calzavara-Pinton, M. Venturini, R. Sala, "Photodynamic therapy: update 2006 - Part 1: Photochemistry and photobiology," J. Eur. Acad. Dermatol. 21(3), 293–302 (2007).

    [62] T. J. Dougherty, C. J. Gomer, B. W. Henderson, G. Jori, D. Kessel, M. Korbelik, J. Moan, Q. Peng, "Photodynamic therapy," J. Nat. Cancer Inst. 90 (12), 889–905 (1998).

    [63] T. Maisch, "Anti-microbial photodynamic therapy: useful in the future?," Lasers Med. Sci. 22(2), 83–91 (2007).

    [64] Z. Malik, H. Ladan, Y. Nitzan, "Photodynamic inactivation of Gram-negative bacteria: problems and possible solutions," J. Photochem. Photobiol. B 14(3), 262–266 (1992).

    [65] E. Glukhov, M. Stark, L. L. Burrows, C. M. Deber, "Basis for selectivity of cationic antimicrobial peptides for bacterial versus mammalian membranes," J. Biol. Chem. 280(40), 33960–33967 (2005).

    [66] G. Jori, C. Fabris, M. Soncin, S. Ferro, O. Coppellotti, D. Dei, L. Fantetti, G. Chiti, G. Roncucci, "Photodynamic therapy in the treatment of microbial infections: basic principles and perspective applications," Lasers Surg. Med. 38(5), 468–481 (2006).

    [67] P. D. Cotter, R. P. Ross, C. Hill, "Bacteriocins - A viable alternative to antibiotics?," Nat. Rev. Microbiol. 11(2), 95–105 (2013).

    [68] G. P. Tegos, M. R. Hamblin, "Disruptive innovations, new anti-infectives in the age of resistance," Curr. Opin. Pharmacol. 13, 673–677 (2013).

    [69] H. W. Boucher, G. R. Corey, "Epidemiology of methicillin-resistant Staphylococcus aureus," Clin. Infect. Dis. 46(5), S344–S349 (2008).

    [70] G. A. Noskin, R. J. Rubin, J. J. Schentag, J. Kluytmans, E. C. Hedlom, M. Smulders, E. Lapetina, E. Gemmen, "The burden of Staphylococcus aureus infections on hospitals in the United States: an analysis of the 2000 and 2001 Nationwide Inpatient Sample Database," Arch. Intern. Med. 165(15), 1756–1761 (2005).

    [71] V. Gostev, A. Kruglov, O. Kalinogorskaya, O. Dmitrenko, O. Khokhlova, T. Yamamoto, Y. Lobzin, I. Ryabchenko, S. Sidorenko, "Molecular epidemiology and antibiotic resistance of methicillin-resistant Staphylococcus aureus circulating in the Russian Federation," Infect. Genet. Evol. 53, 189–194 (2017).

    [72] N. A. Turner, B. K. Sharma-Kuinkel, S. A. Maskarinec, E. A. Eichenberger, P. P. Shah, M. Carugati, T. L. Holland, V. G. Fowler, Jr., "Methicillin-resistant Staphylococcus aureus: an overview of basic and clinical research," Nat. Rev. Microbiol. 17(4), 203–218 (2019).

    [73] F. Gu, W. He, S. Xiao, S. Wang, X. Li, Q. Zeng, Y. Ni, L. Han, "Antimicrobial resistance and molecular epidemiology of Staphylococcus aureus causing bloodstream infections at Ruijin Hospital in Shanghai from 2013 to 2018," Sci. Rep. 10, 6019 (2020).

    [74] X. Fu, Y. Fang, M. Yao, "Antimicrobial photodynamic therapy for methicillin-resistant Staphylococcus aureus infection," Biomed. Res. Int. 10, 1155 (2013).

    [75] Y. Liu, R. Qin, S. A. J. Zaat, E. Breukink, M. Heger, "Antibacterial photodynamic therapy: Overview of a promising approach to fight antibiotic-resistant bacterial infections," J. Clin. Trans. Res. 1, 140–167 (2015).

    [76] K. Aponiene, Z. Luksiene, "Effective combination of LED-based visible light, photosensitizer and photocatalyst to combat Gram (-) bacteria," J. Photochem. Photobiol. B 142, 257–263 (2015).

    [77] M. R. Hamblin, "Antimicrobial photodynamic inactivation: A bright new technique to kill resistant microbes," Curr. Opin. Microbiol. 33, 67–73 (2016).

    [78] L. E. Murdoch, M. Maclean, E. Endarko, S. J. MacGregor, J. G. Anderson, "Bactericidal effects of 405 nm light exposure demonstrated by inactivation of Escherichia,Salmonella,Shigella,Listeria and Mycobacteriumspecies in liquid suspensions and on exposed surfaces," Sci. World J. 2012, 137805 (2012).

    [79] T. Dai, A. Gupta, C. K. Murray, M. S. Vrahas, G. P. Tegos, M. R. Hamblin, "Blue light for infectious diseases: Propionibacterium acnes,Helicobacter pylori, and beyond?," Drug Resist. Updat. 4, 223–236 (2012).

    [80] H. Gursoy, C. Ozcakir-Tomruk, J. Tanalp, S. Yilmaz, "Photodynamic therapy in dentistry: A literature review," Clin. Oral Investig. 17, 1113–1125 (2013).

    [81] Y. Lin, T. Zhou, R. Bai, Y. Xie, "Chemical approaches for the enhancement of porphyrin skeleton-based photodynamic therapy," J. Enzyme Inhib. Med. Chem. 35(1), 1080–1099 (2020).

    [82] J. B. Gillespie, M. Maclean, M. J. Given, M. P. Wilson, M. D. Judd, I. V. Timoshkin, S. J. MacGregor, "E±cacy of pulsed 405-nm lightemitting diodes for antimicrobial photodynamic inactivation: Effects of intensity, frequency, and duty cycle," Photomed. Laser Surg. 35(3), 150–156 (2016).

    [83] M. G. Seeger, A. S. Ries, L. T. Gressler, S. A. Botton, B. A. Iglesias, J. F. Cargnelutti, "In vitro antimicrobial photodynamic therapy using tetracationic porphyrins against multidrug-resistant bacteria isolated from canine otitis," Photodiagnosis Photodyn. Ther. 32, 101982 (2020).

    [84] B. M. Amos-Tautua, S. P. Songca, O. S. Oluwafemi, "Application of porphyrins in antibacterial photodynamic therapy," Molecules 24(13), 2456 (2019).

    [85] C. D. Anjos, F. P. Sellera, M. S. Ribeiro, M. S. Baptista, F. C. Pogliani, N. Lincopan, C. P. Sabino, "Antimicrobial blue light and photodynamic therapy inhibit clinically relevant β-lactamases with extended-spectrum (ESBL) and carbapenemase activity," Photodiagnosis Photodyn. Ther. 32, 102086 (2020).

    [86] W. Ma, T. Wang, L. Zang, Z. Jiang, Z. Zhang, L. Bi, W. Cao, "Bactericidal effects of hematoporphyrin monomethyl ether-mediated blue-light photodynamic therapy against Staphylococcus aureus," Photochem. Photobiol. Sci. 18(1), 92–97 (2019).

    [87] A. Di Poto, M. S. Sbarra, G. Provenza, L. Visai, P. Speziale, "The effect of photodynamic treatment combined with antibiotic action or host defence mechanisms on Staphylococcus aureus biofilms," Biomaterials 30(18), 3158–3166 (2009).

    [88] A. Hanakova, K. Bogdanova, K. Tomankova, K. Pizova, J. Malohlava, S. Binder, R. Bajgar, K. Langova, M. Kolar, J. Mosinger, H. Kolarova, "The application of antimicrobial photodynamic therapy on S. aureus and E. coliusing porphyrin photosensitizers bound to cyclodextrin," Microbiol. Res. 169(2–3), 163–170 (2014).

    [89] F. Barra, E. Roscetto, A. A. Soriano, A. Vollaro, I. Postiglione, G. M. Pierantoni, G. Palumbo, M. R. Catania, "Photodynamic and antibiotic therapy in combination to fight biofilms and resistant surface bacterial infections," Int. J. Mol. Sci. 16(9), 20417–20430 (2015).

    [90] S. T. Alam, H. Hwang, J. D. Son, U. T. T. Nguyen, J. S. Park, H. C. Kwon, J. Kwon, K. Kang, "Natural photosensitizers from Tripterygium wilfordii and their antimicrobial photodynamic therapeutic effects in a Caenorhabditis elegans model," J. Photochem. Photobiol. B, Biol. 218, 112184 (2021).

    [91] S. T. Alam, T. A. N. Le, J. S. Park, H. C. Kwon, K. Kang, "Antimicrobial biophotonic treatment of ampicillin-resistant Pseudomonas aeruginosa with hypericin and ampicillin cotreatment followed by orange light," Pharmaceutics 11, 120641 (2019).

    [92] M. R. Ronqui, T. M. S. F. de Aguiar Coletti, L. M. de Freitas, E. T. Miranda, C. R. Fontana, "Synergistic antimicrobial effect of photodynamic therapy and ciprofloxacin," J. Photochem. Photobiol. 158, 122–129 (2016).

    [93] V. V. Tuchin, E. A. Genina, E. S. Tuchina, A. V. Svetlakova, Y. I. Svenskayaa, "Optical clearing of tissues: issues of antimicrobial phototherapy and drug delivery," Adv. Drug Deliv. Rev., submitted (2021).

    [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese]. Meso-substituted cationic 3- and 4-N-Pyridylporphyrins and their Zn(II) derivatives for antibacterialphotodynamic therapy[J]. Journal of Innovative Optical Health Sciences, 2022, 15(1): 2142007
    Download Citation