• Photonics Research
  • Vol. 8, Issue 2, 165 (2020)
Li Shen1, Hao Wu1, Can Zhao1、*, Lei Shen2, Rui Zhang2, Weijun Tong2, Songnian Fu1, and Ming Tang1
Author Affiliations
  • 1Wuhan National Laboratory for Optoelectronics (WNLO) & National Engineering Laboratory for Next Generation Internet Access System, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China
  • 2State Key Laboratory of Optical Fiber and Cable Manufacture Technology, Yangtze Optical Fiber and Cable Joint Stock Limited Company (YOFC) R&D Center, Wuhan 430073, China
  • show less
    DOI: 10.1364/PRJ.379178 Cite this Article Set citation alerts
    Li Shen, Hao Wu, Can Zhao, Lei Shen, Rui Zhang, Weijun Tong, Songnian Fu, Ming Tang. Distributed curvature sensing based on a bending loss-resistant ring-core fiber[J]. Photonics Research, 2020, 8(2): 165 Copy Citation Text show less
    References

    [1] Z. Zhang, X. Bao. Distributed optical fiber vibration sensor based on spectrum analysis of polarization-OTDR system. Opt. Express, 16, 10240-10247(2008).

    [2] X. Feng, J. Zhou, C. Sun, X. Zhang, F. Ansari. Theoretical and experimental investigations into crack detection with BOTDR-distributed fiber optic sensors. J. Eng. Mech., 139, 1797-1807(2013).

    [3] Z. N. Wang, J. J. Zeng, J. Li, M. Q. Fan, H. Wu, F. Peng, L. Zhang, Y. Zhou, Y. J. Rao. Ultra-long phase-sensitive OTDR with hybrid distributed amplification. Opt. Lett., 39, 5866-5869(2014).

    [4] M. K. Saxena, S. D. V. S. J. Raju, R. Arya, R. B. Pachori, S. V. G. Ravindranath, S. Kher, S. M. Oak. Raman optical fiber distributed temperature sensor using wavelet transform based simplified signal processing of Raman backscattered signals. Opt. Laser Technol., 65, 14-24(2015).

    [5] W. Li, X. Bao, Y. Li, L. Chen. Differential pulse-width pair BOTDA for high spatial resolution sensing. Opt. Express, 16, 21616-21625(2008).

    [6] D. Ba, B. Wang, D. Zhou, M. Yin, Y. Dong, H. Li, Z. Lu, Z. Fan. Distributed measurement of dynamic strain based on multi-slope assisted fast BOTDA. Opt. Express, 24, 9781-9793(2016).

    [7] C. Zhao, M. Tang, L. Wang, H. Wu, Z. Zhao, Y. Dang, J. Wu, S. Fu, D. Liu, P. P. Shum. BOTDA using channel estimation with direct-detection optical OFDM technique. Opt. Express, 25, 12698-12709(2017).

    [8] Y. Dong, B. Wang, C. Pang, D. Zhou, D. Ba, H. Zhang, X. Bao. 150 km fast BOTDA based on the optical chirp chain probe wave and Brillouin loss scheme. Opt. Lett., 43, 4679-4682(2018).

    [9] T. Kurashima, T. Horiguchi, M. Tateda. Distributed-temperature sensing using stimulated Brillouin scattering in optical silica fibers. Opt. Lett., 15, 1038-1040(1990).

    [10] T. Horiguchi, T. Kurashima, M. Tateda. A technique to measure distributed strain in optical fibers. IEEE Photon. Technol. Lett., 2, 352-354(1990).

    [11] M. Nikles, L. Thévenaz, P. A. Robert. Simple distributed fiber sensor based on Brillouin gain spectrum analysis. Opt. Lett., 21, 758-760(1996).

    [12] L. Zou, X. Bao. Dependence of the Brillouin frequency shift on strain and temperature in a photonic crystal fiber. Opt. Lett., 29, 1485-1487(2004).

    [13] Complete experimental characterization of stimulated Brillouin scattering in photonic crystal fiber. Opt. Express, 15, 15517-15522(2007).

    [14] Stimulated Brillouin scattering of visible light in small-core photonic crystal fibers. Opt. Lett., 39, 2330-2333(2014).

    [15] Characterization of evolution of mode coupling in a graded-index polymer optical fiber by using Brillouin optical time-domain analysis. Opt. Express, 22, 26510-26516(2014).

    [16] Few-mode fiber multi-parameter sensor with distributed temperature and strain discrimination. Opt. Lett., 40, 1488-1491(2015).

    [17] Few-mode fiber based distributed curvature sensor through quasi-single-mode Brillouin frequency shift. Opt. Lett., 41, 1514-1517(2016).

    [18] Few-mode optical fiber based simultaneously distributed curvature and temperature sensing. Opt. Express, 25, 12722-12732(2017).

    [19] Multi-parameter distributed fiber sensing with higher-order optical and acoustic modes. Opt. Lett., 44, 1096-1099(2019).

    [20] Characterization of distributed Brillouin sensors based on elliptical-core two-mode fiber. IEEE Sens. J., 19, 2155-2161(2019).

    [21] Distributed shape sensing using Brillouin scattering in multi-core fibers. Opt. Express, 24, 25211-25223(2016).

    [22] Spatial-division multiplexed Brillouin distributed sensing based on a heterogeneous multicore fiber. Opt. Lett., 42, 171-174(2017).

    [23] Enhancement of accuracy in shape sensing of surgical needles using optical frequency domain reflectometry in optical fibers. Biomed. Opt. Express, 8, 2210-2221(2017).

    [24] Shape sensing of miniature snake-like robots using optical fibers. IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 947-952(2017).

    [25] Fiber optic sensors in structural health monitoring. J. Lightwave Technol., 29, 587-608(2011).

    [26] Bend-induced Brillouin frequency shift variation in a single-mode fiber. IEEE Photon. Technol. Lett., 25, 2362-2364(2013).

    [27] Spiral fibre microbend sensors. IEE Proc. Optoelectron., 144, 145-150(1997).

    [28] Low-loss 25.3 km few-mode ring-core fiber for mode-division multiplexed transmission. J. Lightwave Technol., 35, 1363-1368(2017).

    [29] Mode division multiplexing based on ring core optical fibres. IEEE J. Quantum Electron., 54, 6300413(2018).

    [30] Design of PANDA ring-core fiber with 10 polarization-maintaining modes. Photon. Res., 5, 1-5(2016).

    [31] Polarization-maintaining few mode fiber composed of a central circular-hole and an elliptical-ring core. Photon. Res., 5, 261-266(2017).

    [32] A brief review of specialty optical fibers for Brillouin-scattering-based distributed sensors. Appl. Sci., 8, 1996(2018).

    [33] Bend property of few-mode ring-core fiber supporting seven spatial modes for mode-division multiplexed applications. Proc. SPIE, 11048, 110484E(2019).

    [34] Modeling and evaluating the performance of Brillouin distributed optical fiber sensors. Opt. Express, 21, 31347-31366(2013).

    [35] Determination of bending-induced strain in optical fibers by use of quantitative phase imaging. Opt. Lett., 27, 86-88(2002).

    [36] Field deformation in a curved single-mode fibre. Electron. Lett., 14, 130-132(1978).

    [37] Improved bend loss formula verified for optical fiber by simulation and experiment. IEEE J. Quantum Electron., 43, 899-909(2007).

    [38] Non-local effects in dual-probe-sideband Brillouin optical time domain analysis. Opt. Express, 23, 10341-10352(2015).

    [39] Single-shot BOTDA based on an optical chirp chain probe wave for distributed ultrafast measurement. Light Sci. Appl., 7, 32(2018).

    [40] Fast Brillouin optical time domain analysis for dynamic sensing. Opt. Express, 20, 8584-8591(2012).

    [41] Brillouin distributed fiber sensors: an overview and applications. J. Sens., 2012, 204121(2012).

    [42] Brillouin linewidth characterization in single mode large effective area fiber through the co-pumped technique. Int. J. Electron. Comput. Commun. Technol., 1, 16-20(2010).

    [43] Highly birefringent elliptical core photonic crystal fiber for terahertz application. Opt. Commun., 407, 92-96(2018).

    [44] Intermodal stimulated Brillouin scattering in two-mode fibers. Opt. Lett., 38, 1805-1807(2013).

    Li Shen, Hao Wu, Can Zhao, Lei Shen, Rui Zhang, Weijun Tong, Songnian Fu, Ming Tang. Distributed curvature sensing based on a bending loss-resistant ring-core fiber[J]. Photonics Research, 2020, 8(2): 165
    Download Citation