• Photonics Insights
  • Vol. 2, Issue 3, R06 (2023)
Yuxuan Chen1, Yuhang He1, Liyuan Liu1, Zhen Tian1、*, Xi-Cheng Zhang2、*, and Jianming Dai1、*
Author Affiliations
  • 1Center for Terahertz Waves & School of Precision Instrument and Opto-electronics Engineering, Tianjin University, Tianjin, China
  • 2The Institute of Optics, University of Rochester, Rochester, USA
  • show less
    DOI: 10.3788/PI.2023.R06 Cite this Article Set citation alerts
    Yuxuan Chen, Yuhang He, Liyuan Liu, Zhen Tian, Xi-Cheng Zhang, Jianming Dai. Plasma-based terahertz wave photonics in gas and liquid phases[J]. Photonics Insights, 2023, 2(3): R06 Copy Citation Text show less
    References

    [1] B. Ferguson, X. C. Zhang. Materials for terahertz science and technology. Nat. Mater., 1, 26(2002).

    [2] D. Mittleman. Sensing with Terahertz Radiation, 85(2003).

    [3] M. Tonouchi. Cutting-edge terahertz technology. Nat. Photonics, 1, 97(2007).

    [4] J. F. Federici et al. THz imaging and sensing for security applications—explosives, weapons and drugs. Semicond. Sci. Technol., 20, S266(2005).

    [5] M. Liu et al. Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial. Nature, 487, 345(2012).

    [6] O. Schubert et al. Sub-cycle control of terahertz high-harmonic generation by dynamical Bloch oscillations. Nat. Photonics, 8, 119(2014).

    [7] T. Kleine-Ostmann, T. Nagatsuma. A review on terahertz communications research. J. Infrared Millim. Terahertz Waves, 32, 143(2011).

    [8] H. Hamster et al. Subpicosecond, electromagnetic pulses from intense laser-plasma interaction. Phys. Rev. Lett., 71, 2725(1993).

    [9] D. J. Cook, R. M. Hochstrasser. Intense terahertz pulses by four-wave rectification in air. Opt. Lett., 25, 1210(2000).

    [10] T. Bartel et al. Generation of single-cycle THz transients with high electric-field amplitudes. Opt. Lett., 30, 2805(2005).

    [11] X. Xie, J. Dai, X.-C. Zhang. Coherent control of THz wave generation in ambient air. Phys. Rev. Lett., 96, 075005(2006).

    [12] K. Y. Kim et al. Terahertz emission from ultrafast ionizing air in symmetry-broken laser fields. Opt. Express, 15, 4577(2007).

    [13] K. Y. Kim et al. Coherent control of terahertz supercontinuum generation in ultrafast laser-gas interactions. Nat. Photonics, 2, 605(2008).

    [14] M. Kress et al. Determination of the carrier-envelope phase of few-cycle laser pulses with terahertz-emission spectroscopy. Nat. Phys., 2, 327(2006).

    [15] M. D. Thomson et al. Broadband THz emission from gas plasmas induced by femtosecond optical pulses: from fundamentals to applications. Laser Photonics Rev., 1, 349(2007).

    [16] H. Zhong, N. Karpowicz, X. C. Zhang. Terahertz emission profile from laser-induced air plasma. Appl. Phys. Lett., 88, 261103(2006).

    [17] Y. Q. Chen et al. Terahertz pulse generation from noble gases. Appl. Phys. Lett., 91, 251116(2007).

    [18] X. F. Lu et al. Systematic study of broadband terahertz gas sensor. Appl. Phys. Lett., 93, 261106(2008).

    [19] S. Akturk et al. Pulse shortening, spatial mode cleaning, and intense terahertz generation by filamentation in xenon. Phys. Rev. A, 76, 063819(2007).

    [20] C. D’Amico et al. Conical forward THz emission from femtosecond-laser-beam filamentation in air. Phys. Rev. Lett., 98, 235002(2007).

    [21] A. Houard et al. Calorimetric detection of the conical terahertz radiation from femtosecond laser filaments in air. Appl. Phys. Lett., 91, 241105(2007).

    [22] Y. Liu et al. Terahertz radiation source in air based on bifilamentation of femtosecond laser pulses. Phys. Rev. Lett., 99, 135002(2007).

    [23] C. D’Amico et al. Forward THz radiation emission by femtosecond filamentation in gases: theory and experiment. New J. Phys., 10, 013015(2008).

    [24] Y. Liu et al. Amplification of transition-Cherenkov terahertz radiation of femtosecond filament in air. Appl. Phys. Lett., 93, 051108(2008).

    [25] A. Houard et al. Strong enhancement of terahertz radiation from laser filaments in air by a static electric field. Phys. Rev. Lett., 100, 255006(2008).

    [26] A. Houard et al. Polarization analysis of THz generated by four wave mixing in air. Conference on Lasers and Electro-Optics(2008).

    [27] A. Houard et al. Polarization analysis of terahertz radiation generated by four-wave mixing in air. Opt. Lett., 33, 1195(2008).

    [28] Y. Zhang et al. Non-radially polarized THz pulse emitted from femtosecond laser filament in air. Opt. Express, 16, 15483(2008).

    [29] Y. P. Chen et al. Elliptically polarized terahertz emission in the forward direction of a femtosecond laser filament in air. Appl. Phys. Lett., 93, 231116(2008).

    [30] T. J. Wang et al. High energy terahertz emission from two-color laser-induced filamentation in air with pump pulse duration control. Appl. Phys. Lett., 95, 131108(2009).

    [31] Y. P. Chen et al. Characterization of terahertz emission from a dc-biased filament in air. Appl. Phys. Lett., 95, 101101(2009).

    [32] T. Fuji, T. Suzuki. Generation of sub-two-cycle mid-infrared pulses by four-wave mixing through filamentation in air. Opt. Lett., 32, 3330(2007).

    [33] J. Dai, X. Xie, X. Zhang. Terahertz wave amplification in gases with the excitation of femtosecond laser pulses. Appl. Phys. Lett., 91, 211102(2007).

    [34] L.-L. Zhang et al. Observation of terahertz radiation via the two-color laser scheme with uncommon frequency ratios. Phys. Rev. Lett., 119, 235001(2017).

    [35] S. Zhang et al. Excitation-wavelength scaling of terahertz radiation in alkali vapor plasmas. Appl. Phys. Lett., 111, 111104(2017).

    [36] H. Wen, A. M. Lindenberg. Coherent terahertz polarization control through manipulation of electron trajectories. Phys. Rev. Lett., 103, 023902(2009).

    [37] J. Dai, N. Karpowicz, X.-C. Zhang. Coherent polarization control of terahertz waves generated from two-color laser-induced gas plasma. Phys. Rev. Lett., 103, 023001(2009).

    [38] M. Clerici et al. Wavelength scaling of terahertz generation by gas ionization. Phys. Rev. Lett., 110, 253901(2013).

    [39] J. Dai, X. Xie, X.-C. Zhang. Detection of broadband terahertz waves with a laser-induced plasma in gases. Phys. Rev. Lett., 97, 103903(2006).

    [40] N. Karpowicz et al. Coherent heterodyne time-domain spectrometry covering the entire “terahertz gap”. Appl. Phys. Lett., 92, 011131(2008).

    [41] E. Matsubara, M. Nagai, M. Ashida. Ultrabroadband coherent electric field from far infrared to 200 THz using air plasma induced by 10 fs pulses. Appl. Phys. Lett., 101, 011105(2012).

    [42] S. Feng et al. Observation on the competition mechanism of terahertz wave generation from filament in bias electric field. Opt. Commun., 473, 125917(2020).

    [43] Q. Jin et al. Observation of broadband terahertz wave generation from liquid water. Appl. Phys. Lett., 111, 071103(2017).

    [44] I. Dey et al. Highly efficient broadband terahertz generation from ultrashort laser filamentation in liquids. Nat. Commun., 8, 1184(2017).

    [45] T. Löffler, F. Jacob, H. G. Roskos. Generation of terahertz pulses by photoionization of electrically biased air. Appl. Phys. Lett., 77, 453(2000).

    [46] V. A. Andreeva et al. Ultrabroad terahertz spectrum generation from an air-based filament plasma. Phys. Rev. Lett., 116, 063902(2016).

    [47] A. V. Balakin et al. Terahertz wave generation from liquid nitrogen. Photonics Res., 7, 678(2019).

    [48] E. Yiwen et al. Flowing cryogenic liquid target for terahertz wave generation. AIP Adv., 10, 105119(2020).

    [49] Y. Cao et al. Broadband terahertz wave emission from liquid metal. Appl. Phys. Lett., 117, 041107(2020).

    [50] A. N. Tcypkin et al. Flat liquid jet as a highly efficient source of terahertz radiation. Opt. Express, 27, 15485(2019).

    [51] A. O. Ismagilov et al. Liquid jet-based broadband terahertz radiation source. Opt. Eng., 60, 082009(2021).

    [52] Y. Tan et al. Water-based coherent detection of broadband terahertz pulses. Phys. Rev. Lett., 128, 093902(2022).

    [53] J. Liu, X. C. Zhang. Terahertz-radiation-enhanced emission of fluorescence from gas plasma. Phys. Rev. Lett., 103, 235002(2009).

    [54] J. L. Liu et al. Broadband terahertz wave remote sensing using coherent manipulation of fluorescence from asymmetrically ionized gases. Nat. Photonics, 4, 627(2010).

    [55] B. Clough, J. Liu, X. C. Zhang. Laser-induced photoacoustics influenced by single-cycle terahertz radiation. Opt. Lett., 35, 3544(2010).

    [56] M. Chen, X.-H. Yuan, Z.-M. Sheng. Scalable control of terahertz radiation from ultrashort laser-gas interaction. Appl. Phys. Lett., 101, 161908(2012).

    [57] F. Jahangiri et al. Directional elliptically polarized terahertz emission from air plasma produced by circularly polarized intense femtosecond laser pulses. Appl. Phys. Lett., 99, 161505(2011).

    [58] M. Kress et al. Terahertz-pulse generation by photoionization of air with laser pulses composed of both fundamental and second-harmonic waves. Opt. Lett., 29, 1120(2004).

    [59] H. Zhong, N. Karpowicz, X.-C. Zhang. Terahertz emission profile from laser-induced air plasma. Appl. Phys. Lett., 88, 261103(2006).

    [60] Z. Zhang et al. Dual-frequency terahertz emission from splitting filaments induced by lens tilting in air. Appl. Phys. Lett., 105, 101110(2014).

    [61] A. Gorodetsky et al. Physics of the conical broadband terahertz emission from two-color laser-induced plasma filaments. Phys. Rev. A, 89, 033838(2014).

    [62] K.-Y. Kim. Generation of coherent terahertz radiation in ultrafast laser-gas interactions. Phys. Plasmas, 16, 056706(2009).

    [63] H. Huang et al. Spatio-temporal control of THz emission. Commun. Phys., 5, 134(2022).

    [64] Y. S. You, T. I. Oh, K. Y. Kim. Off-axis phase-matched terahertz emission from two-color laser-induced plasma filaments. Phys. Rev. Lett., 109, 183902(2012).

    [65] Q. Song et al. Enhance terahertz radiation and its polarization- control with two paralleled filaments pumped by two-color femtosecond laser fields. Opt. Express, 29, 22659(2021).

    [66] I. Babushkin et al. Ultrafast spatiotemporal dynamics of terahertz generation by ionizing two-color femtosecond pulses in gases. Phys. Rev. Lett., 105, 053903(2010).

    [67] W. Sheng et al. Spectral control of terahertz radiation from inhomogeneous plasma filaments by tailoring two-color laser beams. Opt. Express, 29, 8676(2021).

    [68] Y. Chen et al. Terahertz pulse generation from noble gases. Appl. Phys. Lett., 91, 251116(2007).

    [69] T. Loffler et al. Efficient terahertz pulse generation in laser-induced gas plasmas. Acta Phys. Pol. A, 107, 99(2005).

    [70] S. Tzortzakis et al. Coherent subterahertz radiation from femtosecond infrared filaments in air. Opt. Lett., 27, 1944(2002).

    [71] T.-J. Wang et al. Waveform control of enhanced THz radiation from femtosecond laser filament in air. Appl. Phys. Lett., 110, 221102(2017).

    [72] S. Mou et al. Simultaneous elliptically and radially polarized THz from one-color laser-induced plasma filament. New J. Phys., 23, 063048(2021).

    [73] S. I. Mitryukovskiy et al. Effect of an external electric field on the coherent terahertz emission from multiple filaments in air. Appl. Phys. B, 117, 265(2014).

    [74] Y. Chen et al. Spectral interference of terahertz pulses from two laser filaments in air. Appl. Phys. Lett., 106, 221105(2015).

    [75] D. E. Shipilo et al. Balance of emission from THz sources in DC-biased and unbiased filaments in air. Opt. Express, 29, 40687(2021).

    [76] C. D’Amico et al. Conical forward THz emission from femtosecond-laser-beam filamentation in air. Phys. Rev. Lett., 98, 235002(2007).

    [77] Y. Liu et al. Terahertz radiation source in air based on bifilamentation of femtosecond laser pulses. Phys. Rev. Lett., 99, 135002(2007).

    [78] Y. Minami et al. Longitudinal terahertz wave generation from an air plasma filament induced by a femtosecond laser. Appl. Phys. Lett., 102, 151106(2013).

    [79] B. Forestier et al. Radiofrequency conical emission from femtosecond filaments in air. Appl. Phys. Lett., 96, 141111(2010).

    [80] W.-M. Wang et al. Towards gigawatt terahertz emission by few-cycle laser pulses. Phys. Plasmas, 18, 073108(2011).

    [81] H.-C. Wu, J. Meyer-ter-Vehn, Z.-M. Sheng. Phase-sensitive terahertz emission from gas targets irradiated by few-cycle laser pulses. New J. Phys., 10, 043001(2008).

    [82] P. Sprangle et al. Ultrashort laser pulses and electromagnetic pulse generation in air and on dielectric surfaces. Phys. Rev. E, 69, 066415(2004).

    [83] P. Sprangle, E. Esarey, A. Ting. Nonlinear theory of intense laser-plasma interactions. Phys. Rev. Lett., 64, 2011(1990).

    [84] Z.-M. Sheng et al. Emission of electromagnetic pulses from laser wakefields through linear mode conversion. Phys. Rev. Lett., 94, 095003(2005).

    [85] F. Buccheri, X.-C. Zhang. Terahertz emission from laser-induced microplasma in ambient air. Optica, 2, 366(2015).

    [86] N. Karpowicz, X. C. Zhang. Coherent terahertz echo of tunnel ionization in gases. Phys. Rev. Lett., 102, 093001(2009).

    [87] K. Y. Kim et al. Coherent control of terahertz supercontinuum generation in ultrafast laser–gas interactions. Nat. Photonics, 2, 605(2008).

    [88] Z. Zhang et al. Controllable terahertz radiation from a linear-dipole array formed by a two-color laser filament in air. Phys. Rev. Lett., 117, 243901(2016).

    [89] Z. Zhang et al. Manipulation of polarizations for broadband terahertz waves emitted from laser plasma filaments. Nat. Photonics, 12, 554(2018).

    [90] H. G. Muller. An efficient propagation scheme for the time-dependent Schrodinger equation in the velocity gauge. Laser Phys., 9, 138(1999).

    [91] D. J. Cook et al. Terahertz-field-induced second-harmonic generation measurements of liquid dynamics. Chem. Phys. Lett., 309, 221(1999).

    [92] C.-Y. Li et al. Broadband field-resolved terahertz detection via laser induced air plasma with controlled optical bias. Opt. Express, 23, 11436(2015).

    [93] P. Y. Han, X. C. Zhang. Free-space coherent broadband terahertz time-domain spectroscopy. Meas. Sci. Technol., 12, 1747(2001).

    [94] R. Huber et al. Generation and field-resolved detection of femtosecond electromagnetic pulses tunable up to 41 THz. Appl. Phys. Lett., 76, 3191(2000).

    [95] T.-A. Liu et al. Ultrabroadband terahertz field detection by proton-bombarded InP photoconductive antennas. Opt. Express, 12, 2954(2004).

    [96] Z. Lü et al. Polarization-sensitive air-biased-coherent-detection for terahertz wave. Appl. Phys. Lett., 101, 081119(2012).

    [97] J. Zhang. Polarization-dependent study of THz air-biased coherent detection. Opt. Lett., 39, 4096(2014).

    [98] X. Lu, X.-C. Zhang. Balanced terahertz wave air-biased-coherent-detection. Appl. Phys. Lett., 98, 151111(2011).

    [99] K. J. Garriga Francis et al. Observation of strong terahertz field-induced second harmonic generation in plasma filaments. Opt. Lett., 47, 6297(2022).

    [100] A. Talebpour, Y. Liang, S. Chin. Population trapping in the CO molecule. J. Phys. B: At. Mol. Opt. Phys., 29, 3435(1996).

    [101] A. Iwasaki et al. A LIDAR technique to measure the filament length generated by a high-peak power femtosecond laser pulse in air. Appl. Phys. B, 76, 231(2003).

    [102] A. Martirosyan et al. Time evolution of plasma afterglow produced by femtosecond laser pulses. J. Appl. Phys., 96, 5450(2004).

    [103] H. Xu et al. The mechanism of nitrogen fluorescence inside a femtosecond laser filament in air. Chem. Phys., 360, 171(2009).

    [104] P. B. Corkum, N. H. Burnett, F. Brunel. Above-threshold ionization in the long-wavelength limit. Phys. Rev. Lett., 62, 1259(1989).

    [105] M. Kreß et al. Determination of the carrier-envelope phase of few-cycle laser pulses with terahertz-emission spectroscopy. Nat. Phys., 2, 327(2006).

    [106] D. W. Schumacher et al. Phase dependence of intense field ionization: a study using two colors. Phys. Rev. Lett., 73, 1344(1994).

    [107] B. Clough, J. Dai, X.-C. Zhang. Laser air photonics: beyond the terahertz gap. Mater. Today, 15, 50(2012).

    [108] K. Liu, P. Huang, X.-C. Zhang. Terahertz wave generation from ring-Airy beam induced plasmas and remote detection by terahertz-radiationenhanced- emission-of-fluorescence: a review. Front. Optoelectron., 12, 117(2019).

    [109] J. Dai, X. Zhang. Terahertz wave generation from gas plasma using a phase compensator with attosecond phase-control accuracy. Appl. Phys. Lett., 94, 021117(2009).

    [110] Y. Oishi et al. Generation of extreme ultraviolet continuum radiation driven by a sub-10-fs two-color field. Opt. Express, 14, 7230(2006).

    [111] H. Cui et al. Tunable terahertz reflection spectrum based on band gaps of GaP materials excited by ultrasonic. Opt. Mater., 76, 388(2018).

    [112] Y.-M. Chang. Coherent phonon spectroscopy of GaP Schottky diode. Appl. Phys. Lett., 82, 1781(2003).

    [113] T. I. Oh et al. Generation of strong terahertz fields exceeding 8 MV/cm at 1 kHz and real-time beam profiling. Appl. Phys. Lett., 105, 041103(2014).

    [114] D. Kuk et al. Generation of scalable terahertz radiation from cylindrically focused two-color laser pulses in air. Appl. Phys. Lett., 108, 121106(2016).

    [115] Z. Yu et al. 0.35% THz pulse conversion efficiency achieved by Ti:sapphire femtosecond laser filamentation in argon at 1 kHz repetition rate. Opto-Electronic Adv., 5, 210065(2022).

    [116] C. Meng et al. Enhancement of terahertz radiation by using circularly polarized two-color laser fields. Appl. Phys. Lett., 109, 131105(2016).

    [117] P. B. Petersen, A. Tokmakoff. Source for ultrafast continuum infrared and terahertz radiation. Opt. Lett., 35, 1962(2010).

    [118] P. González de Alaiza Martínez et al. Boosting terahertz generation in laser-field ionized gases using a sawtooth wave shape. Phys. Rev. Lett., 114, 183901(2015).

    [119] S. Liu et al. Coherent control of boosted terahertz radiation from air plasma pumped by a femtosecond three-color sawtooth field. Phys. Rev. A, 102, 063522(2020).

    [120] D. Ma et al. Enhancement of terahertz wave emission from air plasma excited by harmonic three-color laser fields. Opt. Commun., 481, 126533(2021).

    [121] D. Ma et al. Enhancement of terahertz waves from two-color laser-field induced air plasma excited using a third-color femtosecond laser. Opt. Express, 28, 20598(2020).

    [122] V. Vaičaitis et al. Terahertz radiation generation by three-color laser pulses in air filament. J. Appl. Phys., 125, 173103(2019).

    [123] A. D. Koulouklidis et al. Observation of extremely efficient terahertz generation from mid-infrared two-color laser filaments. Nat. Commun., 11, 292(2020).

    [124] A. A. Ushakov et al. Waveform, spectrum, and energy of backward terahertz emission from two-color femtosecond laser induced microplasma. Appl. Phys. Lett., 114, 081102(2019).

    [125] J. Dai, J. Liu, X. C. Zhang. Terahertz wave air photonics: terahertz wave generation and detection with laser-induced gas plasma. IEEE J. Sel. Top. Quantum Electron., 17, 183(2011).

    [126] T. Wang, P. Klarskov, P. U. Jepsen. Ultrabroadband THz time-domain spectroscopy of a free-flowing water film. IEEE Trans. Terahertz Sci. Technol., 4, 425(2014).

    [127] Y. E et al. Terahertz wave generation from liquid water films via laser-induced breakdown. Appl. Phys. Lett., 113, 181103(2018).

    [128] H. H. Huang et al. Dual THz wave and X-ray generation from a water film under femtosecond laser excitation. Nanomaterials, 8, 523(2018).

    [129] H. H. Huang et al. Spatio-temporal control of THz emission. Commun. Phys., 5, 134(2022).

    [130] L.-L. Zhang et al. Strong terahertz radiation from a liquid-water line. Phys. Rev. Appl., 12, 014005(2019).

    [131] Q. Jin et al. Preference of subpicosecond laser pulses for terahertz wave generation from liquids. Adv. Photonics, 2, 015001(2020).

    [132] S. Feng et al. Terahertz wave emission from water lines. Chin. Opt. Lett., 18, 023202(2020).

    [133] Y. Chen et al. Systematic investigation of terahertz wave generation from liquid water lines. Opt. Express, 29, 20477(2021).

    [134] Y. Chen et al. Lateral terahertz wave emission from laser induced plasma in liquid water line. Appl. Phys. Lett., 120, 041101(2022).

    [135] H. Y. Wang, T. Shen. Unified theoretical model for both one- and two-color laser excitation of terahertz waves from a liquid. Appl. Phys. Lett., 117, 131101(2020).

    [136] F. Ling et al. Sideway terahertz emission from a flowing water line. 46th International Conference on Infrared, Millimeter and Terahertz Waves (IRMMW-THz)(2021).

    [137] Q. Jin et al. Observation of broadband terahertz wave generation from liquid water. Appl. Phys. Lett., 111, 071103(2017).

    [138] E. S. Efimenko et al. Femtosecond laser pulse-induced breakdown of a single water microdroplet. J. Opt. Soc. Am. B, 31, 534(2014).

    [139] W. Liu et al. Intensity clamping of a femtosecond laser pulse in condensed matter. Opt. Commun., 202, 189(2002).

    [140] J. A. Curcio, C. C. Petty. The near infrared absorption spectrum of liquid water. J. Opt. Soc. Am., 41, 302(1951).

    [141] Q. Jin et al. Terahertz wave emission from a liquid water film under the excitation of asymmetric optical fields. Appl. Phys. Lett., 113, 261101(2018).

    [142] E. Yiwen, Q. Jin, X.-C. Zhang. Enhancement of terahertz emission by a preformed plasma in liquid water. Appl. Phys. Lett., 115, 101101(2019).

    [143] E. A. Ponomareva et al. Double-pump technique - one step closer towards efficient liquid-based THz sources. Opt. Express, 27, 32855(2019).

    [144] E. A. Ponomareva et al. Varying pre-plasma properties to boost terahertz wave generation in liquids. Commun. Phys., 4, 4(2021).

    [145] Q. Jin et al. Terahertz wave emission from a liquid water film under the excitation of asymmetric optical fields. Appl. Phys. Lett., 113, 261101(2018).

    [146] H. Benisty, R. Stanley, M. Mayer. Method of source terms for dipole emission modification in modes of arbitrary planar structures. J. Opt. Soc. Am. A, 15, 1192(1998).

    [147] Y. Chen et al. Scaling of the terahertz emission from liquid water lines by plasma reshaping. Opt. Lett., 47, 5969(2022).

    [148] A. P. Shkurinov et al. Impact of the dipole contribution on the terahertz emission of air-based plasma induced by tightly focused femtosecond laser pulses. Phys. Rev. E, 95, 043209(2017).

    [149] W. Xiao et al. Highly efficient coherent detection of terahertz pulses based on ethanol. Appl. Phys. Lett., 122, 061105(2023).

    [150] X. Wu et al. Generation of 13.9-mJ terahertz radiation from lithium niobate materials. Adv. Mater., 35, e2208947(2023).

    [151] A. Sell, A. Leitenstorfer, R. Huber. Phase-locked generation and field-resolved detection of widely tunable terahertz pulses with amplitudes exceeding 100 MV/cm. Opt. Lett., 33, 2767(2008).

    [152] F. Junginger et al. Single-cycle multiterahertz transients with peak fields above 10 MV/cm. Opt. Lett., 35, 2645(2010).

    [153] C. Vicario et al. Generation of 0.9-mJ THz pulses in DSTMS pumped by a Cr:Mg2SiO4 laser. Opt. Lett., 39, 6632(2014).

    [154] M. Shalaby, C. P. Hauri. Demonstration of a low-frequency three-dimensional terahertz bullet with extreme brightness. Nat. Commun., 6, 5976(2015).

    [155] Y. E et al. Progress, challenges, and opportunities of terahertz emission from liquids. J. Opt. Soc. Am. B, 39, A43(2022).

    [156] P. R. Whelan et al. Reference-free THz-TDS conductivity analysis of thin conducting films. Opt. Express, 28, 28819(2020).

    [157] A. D. Koulouklidis et al. Ultrafast terahertz self-induced absorption and phase modulation on a graphene-based thin film absorber. ACS Photonics, 9, 3075(2022).

    [158] Y. E et al. Broadband THz sources from gases to liquids. Ultrafast Sci., 2021, 9892763(2021).

    [159] W. Xiao et al. Highly efficient coherent detection of terahertz pulses based on ethanol. Appl. Phys. Lett., 122, 061105(2023).

    Yuxuan Chen, Yuhang He, Liyuan Liu, Zhen Tian, Xi-Cheng Zhang, Jianming Dai. Plasma-based terahertz wave photonics in gas and liquid phases[J]. Photonics Insights, 2023, 2(3): R06
    Download Citation