• Chinese Journal of Quantum Electronics
  • Vol. 42, Issue 1, 148 (2025)
ZHANG Chuancheng1, REN Hao1, WANG Miaomiao1, LIU Longchao1..., ZOU Yong1, LIU Hailian1,*, LIU Wenpeng2,3 and DING Shoujun1,2,3,**|Show fewer author(s)
Author Affiliations
  • 1School of Microelectronics and Data Science, Anhui University of Technology, Maanshan243002, China
  • 2Advanced Laser Technology Laboratory of Anhui Province, Hefei 230037, China
  • 3Anhui Institute of Optics and Fine Mechanics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China
  • show less
    DOI: 10.3969/j.issn.1007-5461.2025.01.014 Cite this Article
    Chuancheng ZHANG, Hao REN, Miaomiao WANG, Longchao LIU, Yong ZOU, Hailian LIU, Wenpeng LIU, Shoujun DING. Growth and properties of Yb:K0.1Na0.9Gd(MoO4)2 crystal[J]. Chinese Journal of Quantum Electronics, 2025, 42(1): 148 Copy Citation Text show less
    References

    [1] Wang Y, Li W, Xue D F. The latest research progress of rare earth optical crystals[J]. Chinese Journal of Quantum Electronics, 38, 228-242(2021).

    [2] Kang R Z, Lyu R C, Teng H et al. Study on Yb: KGW regenerative amplifier based on improved Frantz-Nodvik equation[J]. Chinese Journal of Quantum Electronics, 39, 574-582(2022).

    [3] Han B K, Xiao H Y, Chen Y J et al. Polarized spectroscopic properties and 1046 nm laser operation of Yb3+: Ca3TaGa3Si2O14 crystal[J]. Journal of Luminescence, 251, 119219(2022).

    [4] Zhu J F, Tian W L, Gao Z Y et al. Diode-pumped all-solid-state femtosecond Yb laser oscillators[J]. Chinese Journal of Lasers, 44, 0900001(2017).

    [5] Voron'ko Y K, Subbotin K A, Shukshin V E et al. Growth and spectroscopic investigations of Yb3+-doped NaGd(MoO4)2 and NaLa(MoO4)2—New promising laser crystals[J]. Optical Materials, 29, 246-252(2006).

    [6] Subbotin K A, Lis D A, Osipova Y N et al. Down-conversion in ytterbium-doped NaGd(MoO4)2 crystals[J]. Optics and Spectroscopy, 119, 974-981(2015).

    [7] Subbotin K A, Osipova Y N, Lis D A et al. Cooperative down-conversion of UV light in disordered scheelitelike Yb-doped NaGd(MoO4)2 and NaLa(MoO4)2 crystals[J]. Optics and Spectroscopy, 123, 49-55(2017).

    [8] Guo W J, Chen Y J, Lin Y F et al. Spectroscopic analysis and laser performance of Tm3+: NaGd(MoO4)2 crystal[J]. Journal of Physics D: Applied Physics, 41, 115409(2008).

    [9] Huang J H, Huang J H, Lin Y F et al. Spectroscopic properties of Dy3+-doped NaGd(MoO4)2 crystal[J]. Journal of Alloys and Compounds, 664, 266-271(2016).

    [10] Zhao Y X, Huang Y S, Lin Z B et al. Growth and spectral properties of Er3+/Yb3+ and Ce3+/Er3+/Yb3+-doped NaGd(MoO4)2 crystals[J]. Physica Status Solidi a: Applications and Materials Science, 209, 1317-1321(2012).

    [11] Ren H, Li H Y, Zou Y et al. Growth and properties of Pr3+-doped NaGd(MoO4)2 single crystal: A promising InGaN laser-diode pumped orange-red laser crystal[J]. Journal of Luminescence, 249, 119034(2022).

    [12] Wang X, Chen Z Y, Pan S K et al. Growth and spectroscopic analysis of Sm3+/Tm3+: NaGd(MoO4)2 Crystals[J]. Journal of Luminescence, 252, 119367(2022).

    [13] Kuz'micheva G M, Rybakov V B, Panyutin V L et al. Symmetry of (Na0.5R0.5)MO4 crystals (R = Gd, La; M = W, Mo)[J]. Russian Journal of Inorganic Chemistry, 55, 1448-1453(2010).

    [14] Kuz'micheva G M, Kaurova I A, Zagorul'ko E A et al. Structural perfection of (Na0.5Gd0.5)MoO4: Yb laser crystals[J]. Acta Materialia, 87, 25-33(2015).

    [15] Chang W H, Chen W Y, Chang H S et al. Efficient single-photon sources based on low-density quantum dots in photonic-crystal nanocavities[J]. Physical Review Letters, 96, 117401(2006).

    [16] Curtin W A. Density-functional theory of crystal-melt interfaces[J]. Physical Review B, 39, 6775-6791(1989).

    [17] Fu X W, Jia Z T, Li Y B et al. Crystal growth and characterization of Nd3+:(LaxGd1-x)3Ga5O12 laser crystal[J]. Optical Materials Express, 2, 1242-1253(2012).

    [18] Schnelle W, Fischer R, Gmelin E. Specific heat capacity and thermal conductivity of NdGaO3 and LaAlO3 single crystals at low temperatures[J]. Journal of Physics D: Applied Physics, 34, 846-851(2001).

    [19] Aggarwal R L, Fan T Y. Thermal diffusivity, specific heat, thermal conductivity, coefficient of thermal expansion, and refractive-index change with temperature in AgGaSe2[J]. Applied Optics, 44, 2673-2677(2005).

    [20] Sato Y, Akiyama J, Taira T. Effects of rare-earth doping on thermal conductivity in Y3Al5O12 crystals[J]. Optical Materials, 31, 720-724(2009).

    [21] Zhou W X, Cheng Y, Chen K Q et al. Thermal conductivity of amorphous materials[J]. Advanced Functional Materials, 30, 1903829(2020).

    [22] Gudzenko L V, Kosmyna M B, Shekhovtsov A N et al. Crystal growth and glass-like thermal conductivity of Ca3RE2(BO3)4 (RE = Y, Gd, Nd) single crystals[J]. Crystals, 7, 88(2017).

    [23] Li W W, He D B, Li S G et al. Optical and thermal properties of a new Nd-doped phosphate laser glass[C](2013).

    [25] Yu F P, Zhang S J, Zhao X et al. Characterization of neodymium calcium oxyborate piezoelectric crystal with monoclinic phase[J]. Crystal Growth & Design, 10, 1871-1877(2010).

    [26] Wang B B, Liu W P, Ren H et al. Morphologies and formation mechanisms of the defects in gadolinium- scandium-aluminum garnet single crystal[J]. Journal of Synthetic Crystals, 51, 1851-1857(2022).

    [27] Kaminskii A A, Ueda K I, Eichler H J et al. Tetragonal vanadates YVO4 and GdVO4 - new efficient χ(3)-materials for Raman lasers[J]. Optics Communications, 194, 201-206(2001).

    [29] Kuleshov N V, Lagatsky A A, Podlipensky A V et al. Pulsed laser operation of Yb-doped KY(WO4)2 and KGd(WO4)2[J]. Optics Letters, 22, 1317-1319(1997).

    Chuancheng ZHANG, Hao REN, Miaomiao WANG, Longchao LIU, Yong ZOU, Hailian LIU, Wenpeng LIU, Shoujun DING. Growth and properties of Yb:K0.1Na0.9Gd(MoO4)2 crystal[J]. Chinese Journal of Quantum Electronics, 2025, 42(1): 148
    Download Citation