• Chinese Journal of Quantum Electronics
  • Vol. 31, Issue 4, 442 (2014)
Dong-sheng DING1、2、*, Zhi-yuan ZHOU1、2, and Bao-sen SHI1、2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.3969/j.issn.1007-5461.2014.04.008 Cite this Article
    DING Dong-sheng, ZHOU Zhi-yuan, SHI Bao-sen. A quantum memory for high-dimensional states[J]. Chinese Journal of Quantum Electronics, 2014, 31(4): 442 Copy Citation Text show less
    References

    [1] Saglamyurek Erhan, Sinclair Neil, Jin Jeongwan, et al. Broadband waveguide quantum memory for entangled photons [J]. Nature, 2011, 469: 512-515.

    [2] Choi K S, Deng H, Laurat J, et al. Mapping photonic entanglement into and out of a quantummemory [J]. Nature, 2008, 452: 67-71.

    [3] Briegel H J, Dürl W, Cirac J I, et al. Quantum repeaters: The role of imperfect local operations in quantum communication [J]. Phys. Rev. Lett., 1998, 81: 5932.

    [4] Sangouard Nicolas, Simon Christoph, Zhao Bo, et al. Robust and efficient quantum repeaters with atomic ensembles and linear optics [J]. Phys. Rev. A, 2008, 77: 062301.

    [5] Wang Jian, Yang Jengyuan, FazalIrfan M, et al. Terabit free-space data transmission employing orbital angular momentum multiplexing [J]. Nature Photon., 2012, 6: 488.

    [6] Huang Hao, Xie Guodong, Yan Yan, et al. 100 Tbit/s free-space data link enabled by three-dimensional multiplexing of orbital angular momentum, polarization, and wavelength [J]. Opt. Lett., 2014, 39: 197-200.

    [7] Bechmann-Pasquinucci H, Tittel W. Quantum cryptography using larger alphabets [J]. Phys. Rev. A, 2000, 61: 062308.

    [8] Sokolov I V, Kolohov M I, Gatti A, et al. Quantum holographic teleportation [J]. Opt. Commun., 2001, 193: 175.

    [9] Golubeva T Yu, Golubev YU M, Sokolov I V, et al. Quantum parallel dense coding of optical images [J]. J. Mod. Opt., 2006, 53: 699.

    [10] TordrupKarl, NegrettiAntonio, MomerKlaus. Holographic quantum computing [J]. Phys. Rev. Lett., 2008, 101: 040501.

    [11] KaszlikowskiDagomir, GnacińskiPiotr, ukowskiMarek, et al. Violations of local realism by two entangled N-dimensional systems are stronger than for two qubits [J]. Phys. Rev. Lett., 2000, 85: 4418.

    [12] VértesiTamás, PironioStefano, et al. Closing the detection loophole in Bell experiments using qudits [J]. Phys. Rev. Lett., 2010, 104: 060401.

    [13] RiedmattenH De, MarcikicI, et al. Creating high dimensional entanglement using mode-locked lasers [J]. Quantum Information Comput., 2002, 2: 425.

    [14] O’Sullivan-Hale Malcolm N, Khan Irfan Ali, Boyd Robert W, et al. Pixel entanglement: Experimental realization of optically entangled d=3 and d=6 qudits [J]. Phys. Rev. Lett., 2005, 94: 220501.

    [15] MairAlois, VaziriAlipasha, et al. Entanglement of the orbital angular momentum states of photons [J]. Nature, 2001, 412: 313.

    [16] Franke-Arnold Sonja, Allen Les, Padgett Miles. Advances in optical angular momentum [J]. Laser and Photon. Rev., 2008, 2(4): 299-313.

    [17] Moretti D, Felinto D, TabosaJ W R. Collapses and revivals of stored orbital angular momentum of light in a cold-atom ensemble [J]. Phys. Rev. A, 2009, 79: 023825.

    [18] Shuker M, Firstenberg O, Pugatch R, et al. Storing images in warm atomic vapor [J]. Phys. Rev. Lett., 2008, 100: 223601.

    [19] Vudyasetu P K, Camacho R M, et al. Storage and retrieval of multimode transverse images in hot atomic rubidium vapor [J]. Phys. Rev. Lett., 2008, 100: 123903.

    [20] Glorieux Q, Clark J B, et al. Temporally multiplexed storage of images in a gradient echo memory [J]. Opt. Expr., 2012, 20: 12350-12358.

    [21] Higginbottom D B, Sparkes B M, Rancic M, et al. Spatial mode storage in a gradient echo memory [J]. Phys. Rev. A, 2012, 86: 023801.

    [22] Nicolas A, Veissier L, et al. A quantum memory for orbital angular momentum photonic qubits [J]. Nature Photonics, 2014, 8: 234-238.

    [23] Heinze G, Rudolf A, Beil F, et al. Storage of images in atomic coherences in a rare-earth-ion-doped solid [J]. Phys. Rev. A, 2010, 81: 011401(R).

    [24] DudinY O, Li L, KuzmichA. Light storage on the time scale of a minute [J]. Phys. Rev. A, 2013, 87: 031801(R).

    [25] Ding D S, Wu J H, Zhou Z Y, et al. Multimode image memory based on a cold atomic ensemble [J]. Phys. Rev. A, 2013, 87: 013835.

    [26] Ding D S, Wu J H, Zhou Z Y, et al. Frequency-multiplexed image storage and conversion in a cold atomic ensemble [J]. Phys. Rev. A, 2013, 87: 053830.

    [27] Wu J H, Liu Y, Ding D S, et al. Light storage based on four-wave mixing and electromagnetically induced transparency in cold atoms [J]. Phys. Rev. A, 2013, 87: 013845.

    [28] Ding Dongsheng, Zhou Zhiyuan, Shi Baosen, et al. Single-photon-level quantum image memory based on cold atomic ensembles [J]. Nat. Commun., 2013, 4: 2527.

    CLP Journals

    [1] Zhao Yuanli, Li Fangshu, Qiu Xiaodong, Zhang Wuhong, Lu Qinghong, Chen Lixiang. Frequency Doubling Effect of Topological Charge of Composite Vortex in Frequency Doubling Process[J]. Laser & Optoelectronics Progress, 2017, 54(5): 51901

    [2] XU Kai, CAO Huan, ZHANG Chao, HU Xiaomin, HUANG Yunfeng, LIU Biheng, LI Chuanfeng. Recent advances in transmission of photonic orbital angular momentum quantum state[J]. Chinese Journal of Quantum Electronics, 2022, 39(1): 3

    [3] OUYANG Xu, ZHANG Mingsi, YANG Qingshuai, CAO Yaoyu, XU Yi, LI Xiangping. Progress in orbital angular momentum multiplexing and detection based on nano structures[J]. Chinese Journal of Quantum Electronics, 2022, 39(2): 251

    DING Dong-sheng, ZHOU Zhi-yuan, SHI Bao-sen. A quantum memory for high-dimensional states[J]. Chinese Journal of Quantum Electronics, 2014, 31(4): 442
    Download Citation