• Chinese Journal of Lasers
  • Vol. 49, Issue 20, 2007203 (2022)
Guanchen Wang1、2 and Tongsheng Chen1、2、3、*
Author Affiliations
  • 1Key Laboratory of Laser Life Science, Ministry of Education, College of Biophotonics, South China Normal University, Guangzhou 510631, Guangdong, China
  • 2Guangdong Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, Guangdong, China
  • 3SCNU Qingyuan Institute of Science and Technology Innovation Co., Ltd., Qingyuan 511517, Guangdong, China
  • show less
    DOI: 10.3788/CJL202249.2007203 Cite this Article Set citation alerts
    Guanchen Wang, Tongsheng Chen. Super-Resolution Structural Characteristics of Subcellular Organelles in Living Cells[J]. Chinese Journal of Lasers, 2022, 49(20): 2007203 Copy Citation Text show less
    References

    [1] Abbe E. Beiträge zur theorie des mikroskops und der mikroskopischen wahrnehmung[J]. Archiv Für Mikroskopische Anatomie, 9, 413-468(1873).

    [2] Zhang J, He Q, Wu Z K et al. Application and development of super-resolution microscopy in live cell imaging[J]. Progress in Biochemistry and Biophysics, 48, 1301-1315(2021).

    [3] An S, Dan D, Yu X H et al. Progress and prospect of research on single-molecule localization super-resolution microscopy(invited review)[J]. Acta Photonica Sinica, 49, 0918001(2020).

    [4] Balzarotti F, Eilers Y, Gwosch K C et al. Nanometer resolution imaging and tracking of fluorescent molecules with minimal photon fluxes[J]. Science, 355, 606-612(2017).

    [5] Zhao T Y, Wang Z J, Feng K et al. High-speed structured illumination microscopy and its applications[J]. Laser & Optoelectronics Progress, 57, 240001(2020).

    [6] Yao R W, Xu G, Wang Y et al. Nascent pre-rRNA sorting via phase separation drives the assembly of dense fibrillar components in the human nucleolus[J]. Molecular Cell, 76, 767-783(2019).

    [7] Ricci M A, Manzo C, García-Parajo M F et al. Chromatin fibers are formed by heterogeneous groups of nucleosomes in vivo[J]. Cell, 160, 1145-1158(2015).

    [8] Wombacher R, Heidbreder M, van de Linde S et al. Live-cell super-resolution imaging with trimethoprim conjugates[J]. Nature Methods, 7, 717-719(2010).

    [9] Lukinavičius G, Umezawa K, Olivier N et al. A near-infrared fluorophore for live-cell super-resolution microscopy of cellular proteins[J]. Nature Chemistry, 5, 132-139(2013).

    [10] Lu C H, Tang W C, Liu Y T et al. Lightsheet localization microscopy enables fast, large-scale, and three-dimensional super-resolution imaging[J]. Communications Biology, 2, 177(2019).

    [11] Chagin V O, Casas-Delucchi C S, Reinhart M et al. 4D visualization of replication foci in mammalian cells corresponding to individual replicons[J]. Nature Communications, 7, 11231(2016).

    [12] D'Este E, Kamin D, Göttfert F et al. STED nanoscopy reveals the ubiquity of subcortical cytoskeleton periodicity in living neurons[J]. Cell Reports, 10, 1246-1251(2015).

    [13] Tachibana R, Kamiya M, Morozumi A et al. Design of spontaneously blinking fluorophores for live-cell super-resolution imaging based on quantum-chemical calculations[J]. Chemical Communications, 56, 13173-13176(2020).

    [14] Xu K, Babcock H P, Zhuang X W. Dual-objective STORM reveals three-dimensional filament organization in the actin cytoskeleton[J]. Nature Methods, 9, 185-188(2012).

    [15] Lukinavicˇius G, Reymond L, D'Este E et al. Fluorogenic probes for live-cell imaging of the cytoskeleton[J]. Nature Methods, 11, 731-733(2014).

    [16] Huang X S, Fan J C, Li L J et al. Fast, long-term, super-resolution imaging with Hessian structured illumination microscopy[J]. Nature Biotechnology, 36, 451-459(2018).

    [17] Guo Y T, Li D, Zhang S W et al. Visualizing intracellular organelle and cytoskeletal interactions at nanoscale resolution on millisecond timescales[J]. Cell, 175, 1430-1442(2018).

    [18] Qiao C, Li D, Guo Y T et al. Evaluation and development of deep neural networks for image super-resolution in optical microscopy[J]. Nature Methods, 18, 194-202(2021).

    [19] Gustafsson M G L. Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution[J]. Proceedings of the National Academy of Sciences of the United States of America, 102, 13081-13086(2005).

    [20] Hao X, Yang Q, Kuang C F et al. Optical super-resolution imaging based on frequency shift[J]. Acta Optica Sinica, 41, 0111001(2021).

    [21] Zhao W S, Zhao S Q, Li L J et al. Sparse deconvolution improves the resolution of live-cell super-resolution fluorescence microscopy[J]. Nature Biotechnology, 40, 606-617(2022).

    [22] Wen G, Li S M, Wang L B et al. High-fidelity structured illumination microscopy by point-spread-function engineering[J]. Light: Science & Applications, 10, 70(2021).

    [23] Wang Z J, Zhao T Y, Hao H W et al. High-speed image reconstruction for optically sectioned, super-resolution structured illumination microscopy[J]. Advanced Photonics, 4, 026003(2022).

    [24] Wang J L, Yan W, Zhang J et al. New advances in the research of stimulated emission depletion super-resolution microscopy[J]. Acta Physica Sinica, 69, 108702(2020).

    [25] Li S, Kuang C F, Ding Z H et al. A review on concept and development of stimulated emission depletion microscopy(STED)[J]. Acta Laser Biology Sinica, 22, 103-113(2013).

    [26] Yang X S, Yang Z G, Wu Z Y et al. Mitochondrial dynamics quantitatively revealed by STED nanoscopy with an enhanced squaraine variant probe[J]. Nature Communications, 11, 3699(2020).

    [27] Man Z W, Cui H T, Lv Z et al. Organic nanoparticles-assisted low-power STED nanoscopy[J]. Nano Letters, 21, 3487-3494(2021).

    [28] Ye S, Yan W, Zhao M J et al. Low-saturation-intensity, high-photostability, and high-resolution STED nanoscopy assisted by CsPbBr3 quantum dots[J]. Advanced Materials, 30, 1800167(2018).

    [29] Zong A L, Zhou Y S. Comparison of the characteristics of STORM and STED micro-imaging techniques[J]. Acta Laboratorium Animalis Scientia Sinica, 27, 115-118(2019).

    [30] Zhu L, Zhang W, Elnatan D et al. Faster STORM using compressed sensing[J]. Nature Methods, 9, 721-723(2012).

    [31] Dechat T, Adam S A, Taimen P et al. Nuclear lamins[J]. Cold Spring Harbor Perspectives in Biology, 2, a000547(2010).

    [32] Mitchell-Jordan S, Chen H D, Franklin S et al. Features of endogenous cardiomyocyte chromatin revealed by super-resolution STED microscopy[J]. Journal of Molecular and Cellular Cardiology, 53, 552-558(2012).

    [33] Otsuka S, Bui K H, Schorb M et al. Nuclear pore assembly proceeds by an inside-out extrusion of the nuclear envelope[J]. eLife, 5, e19071(2016).

    [34] Pelicci S, Tortarolo G, Vicidomini G et al. Improving SPLIT-STED super-resolution imaging with tunable depletion and excitation power[J]. Journal of Physics D: Applied Physics, 53, 234003(2020).

    [35] Kner P, Chhun B B, Griffis E R et al. Super-resolution video microscopy of live cells by structured illumination[J]. Nature Methods, 6, 339-342(2009).

    [36] Shao L, Kner P, Rego E H et al. Super-resolution 3D microscopy of live whole cells using structured illumination[J]. Nature Methods, 8, 1044-1046(2011).

    [37] Qiao C, Chen X Y, Zhang S W et al. 3D structured illumination microscopy via channel attention generative adversarial network[J]. IEEE Journal of Selected Topics in Quantum Electronics, 27, 6801711(2021).

    [38] Li D, Shao L, Chen B C et al. Extended-resolution structured illumination imaging of endocytic and cytoskeletal dynamics[J]. Science, 349, aab3500(2015).

    [39] Shim S H, Xia C L, Zhong G S et al. Super-resolution fluorescence imaging of organelles in live cells with photoswitchable membrane probes[J]. Proceedings of the National Academy of Sciences of the United States of America, 109, 13978-13983(2012).

    [40] Chen B L, Gong W J, Yang Z G et al. STORM imaging of mitochondrial dynamics using a vicinal-dithiol-proteins-targeted probe[J]. Biomaterials, 243, 119938(2020).

    [41] Hirvonen L M, Wicker K, Mandula O et al. Structured illumination microscopy of a living cell[J]. European Biophysics Journal: EBJ, 38, 807-812(2009).

    [42] Wang C G, Taki M, Sato Y et al. A photostable fluorescent marker for the superresolution live imaging of the dynamic structure of the mitochondrial cristae[J]. Proceedings of the National Academy of Sciences of the United States of America, 116, 15817-15822(2019).

    [43] Georgiades P, Allan V J, Wright G D et al. The flexibility and dynamics of the tubules in the endoplasmic reticulum[J]. Scientific Reports, 7, 16474(2017).

    [44] Zhu F F, Yang Z H, Wang F et al. 4-dimensional observation ER-mitochondria interaction in living cells under nanoscopy by a stable pyridium salt as biosensor[J]. Sensors and Actuators B: Chemical, 305, 127492(2020).

    [45] Godinez W J, Hossain I, Lazic S E et al. A multi-scale convolutional neural network for phenotyping high-content cellular images[J]. Bioinformatics, 33, 2010-2019(2017).

    [46] Nitta N, Sugimura T, Isozaki A et al. Intelligent image-activated cell sorting[J]. Cell, 175, 266-276(2018).

    [47] Falk T, Mai D, Bensch R et al. U-Net: deep learning for cell counting, detection, and morphometry[J]. Nature Methods, 16, 67-70(2019).

    [48] Kimmel J C, Chang A Y, Brack A S et al. Inferring cell state by quantitative motility analysis reveals a dynamic state system and broken detailed balance[J]. PLoS Computational Biology, 14, e1005927(2018).

    [49] Yang P W, Zhou Y H, Xing G et al. Applications of convolutional neural network in biomedical image[J]. Computer Engineering and Applications, 57, 44-58(2021).

    Guanchen Wang, Tongsheng Chen. Super-Resolution Structural Characteristics of Subcellular Organelles in Living Cells[J]. Chinese Journal of Lasers, 2022, 49(20): 2007203
    Download Citation