• Journal of Inorganic Materials
  • Vol. 37, Issue 2, 140 (2022)
Wei ZHAO1、2, Yang XU1、2, Yingjie WAN1、2, Tianxun CAI1、2, Jinxiao MU1、2, and Fuqiang HUANG1、2、*
Author Affiliations
  • 11. State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
  • 22. Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
  • show less
    DOI: 10.15541/jim20210588 Cite this Article
    Wei ZHAO, Yang XU, Yingjie WAN, Tianxun CAI, Jinxiao MU, Fuqiang HUANG. Metal Cyanamides/Carbodiimides: Structure, Synthesis and Electrochemical Energy Storage Performance[J]. Journal of Inorganic Materials, 2022, 37(2): 140 Copy Citation Text show less
    References

    [1] A ZORKO, P JEGLIČ, A POTOČNIK et al. Unconventional magnetism in a nitrogen-containing analog of cupric oxide. Physical Review Letters, 107, 047208(2011).

    [2] F DUVERNAY, T CHIAVASSA, F BORGET et al. Experimental study of water-ice catalyzed thermal isomerization of cyanamide into carbodiimide: implication for prebiotic chemistry. Journal of the American Chemical Society, 126, 7772-7773(2004).

    [3] U Dehlinger. XVII. Über die Raumgruppe von (CN2H2)2 und die Kristallstruktur von CaCN2. Zeitschrift für Kristallographie- Crystalline Materials, 65, 286-290(1927).

    [4] U BERGER, W SCHNICK. Syntheses, crystal structures, and vibrational spectroscopic properties of MgCN2, SrCN2, and BaCN2. Journal of Alloys and Compounds, 206, 179-184(1994).

    [5] G DOWN M, J HALEY M, P HUBBERSTEY et al. Synthesis of the dilithium salt of cyanamide in liquid lithium; X-ray crystal structure of Li2NCN. Chemical Communications, 1978, 52-53.

    [6] X LIU, A DECKER, D SCHMITZ et al. crystal structure refinement of lead cyanamide and the stiffness of the cyanamide anion. Zeitschrift für Anorganische und Allgemeine Chemie, 626, 103-105(2000).

    [7] R DRONSKOWSKI. In2.24(NCN)3 and NaIn(NCN)2: synthesis and crystal structures of new main group metal cyanamides. Zeitschrift für Naturforschung B, 50, 1245-1251(1995).

    [8] M BECKER, J NUSS, M JANSEN. Crystal structure and spectroscopic data of silver cyanamide. Zeitschrift für Naturforschung B, 55, 383-385(2000).

    [9] B JIA, D SUN, W ZHAO et al. Metal cyanamides: open- framework structure and energy conversion/storage applications. Journal of Energy Chemistry, 61, 347-367(2021).

    [10] C WICKLEDER. Thiocyanates as novel host lattices for emitting rare earth ions: luminescence of Sr(SCN)2:Eu2+. Chemistry of Materials, 17, 1228-1233(2005).

    [11] M KRINGS, G MONTANA, R DRONSKOWSKI et al. α-SrNCN:Eu2+-a novel efficient orange-emitting phosphor. Chemistry of Materials, 23, 1694-1699(2011).

    [12] W ZHAO, Y LIU, J LIU et al. Controllable synthesis of silver cyanamide as a new semiconductor photocatalyst under visible-light irradiation. Journal of Materials Chemistry A, 1, 7942-7948(2013).

    [13] D RESSNIG, M SHALOM, J PATSCHEIDER et al. Photochemical and electrocatalytic water oxidation activity of cobalt carbodiimide. Journal of Materials Chemistry A, 3, 5072-5082(2015).

    [14] B JIA, W ZHAO, L FAN et al. Silver cyanamide nanoparticles decorated ultrathin graphitic carbon nitride nanosheets for enhanced visible-light-driven photocatalysis. Catalysis Science & Technology, 8, 1447-1453(2018).

    [15] T SOUGRATI M, J ARAYAMPARAMBIL J, X LIU et al. Carbodiimides as energy materials: which directions for a reasonable future?. Dalton Transactions, 47, 10827-10832(2018).

    [16] C LIU, C ZHANG, H FU et al. Exploiting high-performance anode through tuning the character of chemical bonds for Li-ion batteries and capacitors. Advanced Energy Materials, 7, 1601127(2017).

    [17] Y LI, C CAO, Q ZHANG et al. Nanorod bundle-like silver cyanamide nanocrystals for the high-efficiency photocatalytic degradation of tetracycline. RSC Advances, 11, 10235-10242(2021).

    [18] A EGUIA-BARRIO, E CASTILLO-MARTINEZ, X LIU et al. Carbodiimides: new materials applied as anode electrodes for sodium and lithium ion batteries. Journal of Materials Chemistry A, 4, 1608-1611(2016).

    [19] T SOUGRATI M, A DARWICHE, X LIU et al. Transition-metal carbodiimides as molecular negative electrode materials for lithium- and sodium-ion batteries with excellent cycling properties. Angewandte Chemie International Edition, 55, 5090-5095(2016).

    [20] M KROTT, A HOUBEN, P MÜLLER et al. Determination of the magnetic structure of manganese carbodiimide with diffraction experiments using polarized neutrons. Physical Review B, 80, 024117(2009).

    [21] M BECKER, M JANSEN. Zinc cyanamide, ZnCN2. Acta Crystallographica Section C, 57, 347-348(2001).

    [22] Q LIU, Y LIU, G DAI et al. Size-controllable synthesis of hierarchical copper carbodiimide microcrystals and their pronounced photoelectric response under visible light. Applied Surface Science, 357, 745-749(2015).

    [23] X LIU, P MÜLLER, P KROLL et al. Synthesis, structure determination, and quantum-chemical characterization of an alternate HgNCN polymorph. Inorganic Chemistry, 41, 4259-4265(2002).

    [24] M LÖBER, K DOLABDJIAN, M STRÖBELE et al. Synthesis, structure, and electronic properties of SnCN2 and Sn4Cl2(CN2)3. Inorganic Chemistry, 58, 7845-7851(2019).

    [25] M KUBUS, R HEINICKE, M STRÖBELE et al. Synthesis of new structurally related cyanamide compounds LiM(CN2)2 where M is Al3+, In3+ or Yb3+. Materials Research Bulletin, 62, 37-41(2015).

    [26] K DOLABDJIAN, C CASTRO, J MEYER H. Layered carbodiimides A2M(CN2)3 with tetravalent cations M=Sn, Zr, and Hf. European Journal of Inorganic Chemistry, 1624-1630(2018).

    [27] J CORKETT A, M KONZE P, R DRONSKOWSKI. The ternary post-transition metal carbodiimide SrZn(NCN)2. Zeitschrift für Anorganische und Allgemeine Chemie, 643, 1456-1461(2017).

    [28] J CORKETT A, M KONZE P, R DRONSKOWSKI. Synthesis, crystal structure, and chemical-bonding analysis of BaZn(NCN)2. Inorganics, 6, 1-10(2018).

    [29] J CORKETT A, Z CHEN, D BOGDANOVSKI et al. Band gap tuning in bismuth oxide carbodiimide Bi2O2NCN. Inorganic Chemistry, 58, 6467-6473(2019).

    [30] K DOLABDJIAN, A L GÖRNE, R DRONSKOWSKI et al. Tin(II) oxide carbodiimide and its relationship to SnO. Dalton Transactions, 47, 13378-13383(2018).

    [31] Y HASHIMOTO, M TAKAHASHI, S KIKKAWA et al. Syntheses and crystal structures of trigonal rare-earth dioxymonocyanamides, Ln2O2CN2(Ln=Ce, Pr, Nd, Sm, Eu, Gd). Journal of Solid State Chemistry, 125, 37-42(1996).

    [32] M LI, W YUAN, J WANG et al. Syntheses and crystal structures of trigonal rare-earth dioxymonocyanamides, Ln2O2CN2 (Ln=Dy, Ho, Er, Tm, Yb). Powder Diffraction, 22, 59-63(2012).

    [33] A LI Z, X CHEN L, R CAI J. First-principles study on electronic structure and half-metallic properties of CoNCN and NiNCN. Communications in Theoretical Physics, 52, 707-709(2009).

    [34] X LIU, M KROTT, P MÜLLER et al. Synthesis, crystal structure, and properties of MnNCN, the first carbodiimide of a magnetic transition metal. Inorganic Chemistry, 44, 3001-3003(2005).

    [35] X TANG, H XIANG, X LIU et al. A ferromagnetic carbodiimide: Cr2(NCN)3. Angewandte Chemie International Edition, 49, 4738-4742(2010).

    [36] B JIA, D SUN, W ZHAO et al. Controllable conversion of CdNCN nanoparticles into various chalcogenide nanostructures for photo-driven applications. Chemistry-A European Journal, 26, 7955-7960(2020).

    [37] R SRINIVASAN, J GLASER, S TRAGL et al. LnCl(CN2) with Ln=La, Ce, and Pr: synthesis and structure of a new lanthanide chloride cyanamide related to the PbFCl-type structure. Zeitschrift für Anorganische und Allgemeine Chemie, 631, 479-483(2005).

    [38] M NEUKIRCH, S TRAGL, J MEYER H. Syntheses and structural properties of rare earth carbodiimides. Inorganic Chemistry, 45, 8188-8193(2006).

    [39] X QIAO, Z MA, D LUO et al. Metathetic synthesis of lead cyanamide as a p-type semiconductor. Dalton Transactions, 49, 14061-14067(2020).

    [40] A THOMAS, A FISCHER, F GOETTMANN et al. Graphitic carbon nitride materials: variation of structure and morphology and their use as metal-free catalysts. Journal of Materials Chemistry, 18, 4893-4908(2008).

    [41] X YAN, Z YE, G NING et al. Molten salt pyrolysis synthesis of magnetic FeNCN nanorods and their visible-light-driven photocatalytic properties. Applied Surface Science, 506, 145010(2020).

    [42] M KROTT, X LIU, P MÜLLER et al. Synthesis and structure determination of Co(HNCN)2 and Ni(HNCN)2. Journal of Solid State Chemistry, 180, 307-312(2007).

    [43] M KROTT, X LIU, B P T FOKWA et al. Synthesis, crystal structure determination and magnetic properties of two new transition-metal carbodiimides: CoNCN and NiNCN. Inorganic Chemistry, 46, 2204-2207(2007).

    [44] X LIU, L STORK, M SPELDRICH et al. FeNCN and Fe(NCNH)2: synthesis, structure, and magnetic properties of a nitrogen-based pseudo-oxide and -hydroxide of divalent iron. Chemistry-A European Journal, 15, 1558-1561(2009).

    [45] X LIU, P MÜLLER, R DRONSKOWSKI. Synthesis and crystal structure of ammine copper(I) cyanamide, Cu4(NCN)2NH3. Zeitschrift für Anorganische und Allgemeine Chemie, 631, 1071-1074(2005).

    [46] L STORK, X LIU, B P T FOKWA et al. Crystal structure determination of thallium carbodiimide, Tl2NCN. Zeitschrift für Anorganische und Allgemeine Chemie, 633, 1339-1342(2007).

    [47] B JIA, W ZHAO, D SUN et al. Robust anion exchange realized in crystalline metal cyanamide nanoparticles. Chemistry of Materials, 31, 9532-9539(2019).

    [48] W ZHAO, J PAN, F HUANG. Nonaqueous synthesis of metal cyanamide semiconductor nanocrystals for photocatalytic water oxidation. Chemical Communications, 54, 1575-1578(2018).

    [49] D KOZIEJ, F KRUMEICH, R NESPER et al. Nonaqueous liquid-phase synthesis of nanocrystalline metal carbodiimides. A proof of concept for copper and manganese carbodiimides. Journal of Materials Chemistry, 19, 5122-5124(2009).

    [50] A EGUIA-BARRIO, E CASTILLO-MARTÍNEZ, F KLEIN et al. Electrochemical performance of CuNCN for sodium ion batteries and comparison with ZnNCN and lithium ion batteries. Journal of Power Sources, 367, 130-137(2017).

    [51] J ARAYAMPARAMBIL J, M MANN, B FRAISSE et al. Cobalt carbodiimide as negative electrode for Li-ion batteries: electrochemical mechanism and performance. ChemElectroChem, 6, 5101-5108(2019).

    [52] J ARAYAMPARAMBIL J, M MANN, X LIU et al. Electrochemical evaluation of Pb, Ag, and Zn cyanamides/carbodiimides. ACS Omega, 4, 4339-4347(2019).

    [53] J ARAYAMPARAMBIL J, K CHEN, A IADECOLA et al. Reversible high capacity and reaction mechanism of Cr2(NCN)3 negative electrodes for Li-ion batteries. Energy Technology, 8, 1901260(2020).

    [54] C BRAUN, L MEREACRE, W HUA et al. SnCN2: a carbodiimide with an innovative approach for energy storage systems and phosphors in modern LED technology. ChemElectroChem, 7, 4550-4561(2020).

    [55] K CHEN, M FEHSE, A LAURITA et al. Quantum-chemical study of the FeNCN conversion-reaction mechanism in lithium- and sodium-ion batteries. Angewandte Chemie International Edition, 59, 3718-3723(2020).

    [56] P GUO, L CAO, R WANG et al. In situ construction of “anchor-like” structures in FeNCN for long cyclic life in sodium- ion batteries. Advanced Functional Materials, 30, 2000208(2020).

    [57] T LI, W ZHAO, H BI et al. Tubular graphene-supported nanoparticulate manganese carbodiimide as a free-standing high-energy and high-rate anode for lithium ion batteries. Journal of Power Sources, 467, 228252(2020).

    [58] W HE, H LI, B LONG et al. One-step synthesis of ZnNCN nanoparticles with adjustable composition for an advanced anode in lithium ion battery. ACS Applied Energy Materials, 4, 4290-4296(2021).

    [59] K CHEN, D LUO, R DRONSKOWSKI. Exploring the possible anionic redox mechanism in Li-rich transition-metal carbodiimides. Journal of Physical Chemistry C, 125, 8479-8487(2021).

    [60] J LI, R WANG, P GUO et al. Realizing fast charge diffusion in oriented iron carbodiimide structure for high-rate sodium-ion storage performance. ACS Nano, 15, 6410-6419(2021).

    [61] Z LÜ, W DONG, B JIA et al. Flexible yet robust framework of tin(II) oxide carbodiimide for reversible lithium storage. Chemistry-A European Journal, 27, 2717-2723(2021).

    [62] S ZHAO, D SEWELL C, R LIU et al. SnO2 as advanced anode of alkali-ion batteries: inhibiting Sn coarsening by crafting robust physical barriers, void boundaries, and heterophase interfaces for superior electrochemical reaction reversibility. Advanced Energy Materials, 10, 1902657(2020).

    [63] J SHEN, X CHEN, P WANG et al. Electrochemical performance of zinc carbodiimides based porous nanocomposites as supercapacitors. Applied Surface Science, 541, 148355(2021).

    [64] M YUAN, S ZHANG, L LIN et al. Manganese carbodiimide nanoparticles modified with N-doping carbon: a bifunctional cathode electrocatalyst for aprotic Li-O2 battery. ACS Sustainable Chemistry & Engineering, 7, 17464-17473(2019).

    Wei ZHAO, Yang XU, Yingjie WAN, Tianxun CAI, Jinxiao MU, Fuqiang HUANG. Metal Cyanamides/Carbodiimides: Structure, Synthesis and Electrochemical Energy Storage Performance[J]. Journal of Inorganic Materials, 2022, 37(2): 140
    Download Citation