• Photonics Research
  • Vol. 11, Issue 10, 1791 (2023)
Tianyu Liu1, Peng Ran1, Yirong Su1, Zeng Chen2, Renchen Lai3, Weidong Shen1, Yaoguang Ma1, Haiming Zhu2, and Yang (Michael) Yang1、*
Author Affiliations
  • 1State Key Laboratory of Modern Optical Instrumentation, Institute for Advanced Photonics, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, China
  • 2State Key Laboratory of Modern Optical Instrumentation, Key Laboratory of Excited State Materials of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
  • 3Instrumentation and Service Center for Molecular Sciences, Westlake University, Hangzhou 310024, China
  • show less
    DOI: 10.1364/PRJ.498412 Cite this Article Set citation alerts
    Tianyu Liu, Peng Ran, Yirong Su, Zeng Chen, Renchen Lai, Weidong Shen, Yaoguang Ma, Haiming Zhu, Yang (Michael) Yang. Solution-processed halide perovskite microcavity exciton-polariton light-emitting diodes working at room temperature[J]. Photonics Research, 2023, 11(10): 1791 Copy Citation Text show less
    References

    [1] R. Su, A. Fieramosca, Q. Zhang, H. S. Nguyen, E. Deleporte, Z. Chen, D. Sanvitto, T. C. H. Liew, Q. Xiong. Perovskite semiconductors for room-temperature exciton-polaritonics. Nat. Mater., 20, 1315-1324(2021).

    [2] H. Deng, H. Haug, Y. Yamamoto. Exciton-polariton Bose-Einstein condensation. Rev. Mod. Phys., 82, 1489-1537(2010).

    [3] S. Ghosh, R. Su, J. Zhao, A. Fieramosca, J. Wu, T. Li, Q. Zhang, F. Li, Z. Chen, T. Liew, D. Sanvitto, Q. Xiong. Microcavity exciton polaritons at room temperature. Photon. Insights, 1, R04(2022).

    [4] D. Sanvitto, S. Kena-Cohen. The road towards polaritonic devices. Nat. Mater., 15, 1061-1073(2016).

    [5] D. Ballarini, M. De Giorgi, E. Cancellieri, R. Houdre, E. Giacobino, R. Cingolani, A. Bramati, G. Gigli, D. Sanvitto. All-optical polariton transistor. Nat. Commun., 4, 1778(2013).

    [6] C. Schneider, A. Rahimi-Iman, N. Y. Kim, J. Fischer, I. G. Savenko, M. Amthor, M. Lermer, A. Wolf, L. Worschech, V. D. Kulakovskii, I. A. Shelykh, M. Kamp, S. Reitzenstein, A. Forchel, Y. Yamamoto, S. Höfling. An electrically pumped polariton laser. Nature, 497, 348-352(2013).

    [7] C. Sturm, D. Tanese, H. S. Nguyen, H. Flayac, E. Galopin, A. Lemaitre, I. Sagnes, D. Solnyshkov, A. Amo, G. Malpuech, J. Bloch. All-optical phase modulation in a cavity-polariton Mach-Zehnder interferometer. Nat. Commun., 5, 3278(2014).

    [8] Y. Xue, I. Chestnov, E. Sedov, E. Kiktenko, A. K. Fedorov, S. Schumacher, X. Ma, A. Kavokin. Split-ring polariton condensates as macroscopic two-level quantum systems. Phys. Rev. Res., 3, 013099(2021).

    [9] Y. Higuchi, K. Omae, H. Matsumura, T. Mukai. Room-temperature CW lasing of a GaN-based vertical-cavity surface-emitting laser by current injection. Appl. Phys. Express, 1, 121102(2008).

    [10] P. G. Savvidis. A practical polariton laser. Nat. Photonics, 8, 588-589(2014).

    [11] I. D. W. Samuel, E. B. Namdas, G. A. Turnbull. How to recognize lasing. Nat. Photonics, 3, 546-549(2009).

    [12] H. Deng, G. Weihs, D. Snoke, J. Bloch, Y. Yamamoto. Polariton lasing vs. photon lasing in a semiconductor microcavity. Proc. Natl. Acad. Sci. USA, 100, 15318-15323(2003).

    [13] T. Byrnes, N. Y. Kim, Y. Yamamoto. Exciton–polariton condensates. Nat. Phys., 10, 803-813(2014).

    [14] H. Kim, L. Zhao, J. S. Price, A. J. Grede, K. Roh, A. N. Brigeman, M. Lopez, B. P. Rand, N. C. Giebink. Hybrid perovskite light emitting diodes under intense electrical excitation. Nat. Commun., 9, 4893(2018).

    [15] C. Zou, Y. Liu, D. S. Ginger, L. Y. Lin. Suppressing efficiency roll-off at high current densities for ultra-bright green perovskite light-emitting diodes. ACS Nano, 14, 6076-6086(2020).

    [16] R. Su, C. Diederichs, J. Wang, T. C. H. Liew, J. Zhao, S. Liu, W. Xu, Z. Chen, Q. Xiong. Room-temperature polariton lasing in all-inorganic perovskite nanoplatelets. Nano Lett., 17, 3982-3988(2017).

    [17] W. Du, S. Zhang, J. Shi, J. Chen, Z. Wu, Y. Mi, Z. Liu, Y. Li, X. Sui, R. Wang, X. Qiu, T. Wu, Y. Xiao, Q. Zhang, X. Liu. Strong exciton–photon coupling and lasing behavior in all-inorganic CsPbBr3 micro/nanowire Fabry-Pérot cavity. ACS Photon., 5, 2051-2059(2018).

    [18] Q. Shang, M. Li, L. Zhao, D. Chen, S. Zhang, S. Chen, P. Gao, C. Shen, J. Xing, G. Xing, B. Shen, X. Liu, Q. Zhang. Role of the exciton-polariton in a continuous-wave optically pumped CsPbBr3 perovskite laser. Nano Lett., 20, 6636-6643(2020).

    [19] R. Su, J. Wang, J. Zhao, J. Xing, W. Zhao, C. Diederichs, T. C. H. Liew, Q. Xiong. Room temperature long-range coherent exciton polariton condensate flow in lead halide perovskites. Sci. Adv., 4, eaau0244(2018).

    [20] K. Peng, R. Tao, L. Haeberle, Q. Li, D. Jin, G. R. Fleming, S. Kena-Cohen, X. Zhang, W. Bao. Room-temperature polariton quantum fluids in halide perovskites. Nat. Commun., 13, 7388(2022).

    [21] L. Polimeno, A. Fieramosca, G. Lerario, M. Cinquino, M. De Giorgi, D. Ballarini, F. Todisco, L. Dominici, V. Ardizzone, M. Pugliese, C. T. Prontera, V. Maiorano, G. Gigli, L. De Marco, D. Sanvitto. Observation of two thresholds leading to polariton condensation in 2D hybrid perovskites. Adv. Opt. Mater., 8, 2000176(2020).

    [22] M. S. Spencer, Y. Fu, A. P. Schlaus, D. Hwang, Y. Dai, M. D. Smith, D. R. Gamelin, X. Y. Zhu. Spin-orbit-coupled exciton-polariton condensates in lead halide perovskites. Sci. Adv., 7, eabj7667(2021).

    [23] R. Tao, K. Peng, L. Haeberlé, Q. Li, D. Jin, G. R. Fleming, S. Kéna-Cohen, X. Zhang, W. Bao. Halide perovskites enable polaritonic XY spin Hamiltonian at room temperature. Nat. Mater., 21, 761-766(2022).

    [24] R. Su, S. Ghosh, J. Wang, S. Liu, C. Diederichs, T. C. H. Liew, Q. Xiong. Observation of exciton polariton condensation in a perovskite lattice at room temperature. Nat. Phys., 16, 301-306(2020).

    [25] J. Wang, H. Xu, R. Su, Y. Peng, J. Wu, T. C. H. Liew, Q. Xiong. Spontaneously coherent orbital coupling of counterrotating exciton polaritons in annular perovskite microcavities. Light Sci. Appl., 10, 45(2021).

    [26] J. Wu, R. Su, A. Fieramosca, S. Ghosh, J. Zhao, T. C. H. Liew, Q. Xiong. Perovskite polariton parametric oscillator. Adv. Photon., 3, 055003(2021).

    [27] D. Bajoni, E. Semenova, A. Lemaître, S. Bouchoule, E. Wertz, P. Senellart, J. Bloch. Polariton light-emitting diode in a GaAs-based microcavity. Phys. Rev. B, 77, 113303(2008).

    [28] S. I. Tsintzos, N. T. Pelekanos, G. Konstantinidis, Z. Hatzopoulos, P. G. Savvidis. A GaAs polariton light-emitting diode operating near room temperature. Nature, 453, 372-375(2008).

    [29] S. I. Tsintzos, P. G. Savvidis, G. Deligeorgis, Z. Hatzopoulos, N. T. Pelekanos. Room temperature GaAs exciton-polariton light emitting diode. Appl. Phys. Lett., 94, 071109(2009).

    [30] S. Brodbeck, J. P. Jahn, A. Rahimi-Iman, J. Fischer, M. Amthor, S. Reitzenstein, M. Kamp, C. Schneider, S. Höfling. Room temperature polariton light emitting diode with integrated tunnel junction. Opt. Express, 21, 31098-31104(2013).

    [31] T. C. Lu, J. R. Chen, S. C. Lin, S. W. Huang, S. C. Wang, Y. Yamamoto. Room temperature current injection polariton light emitting diode with a hybrid microcavity. Nano Lett., 11, 2791-2795(2011).

    [32] Z. Zhang, Y. Wang, S. Yin, T. Hu, Y. Wang, L. Liao, S. Luo, J. Wang, X. Zhang, P. Ni, X. Shen, C. Shan, Z. Chen. Exciton-polariton light-emitting diode based on a ZnO microwire. Opt. Express, 25, 17375-17381(2017).

    [33] M. Jiang, K. Tang, P. Wan, T. Xu, H. Xu, C. Kan. A single microwire near-infrared exciton–polariton light-emitting diode. Nanoscale, 13, 1663-1672(2021).

    [34] F. Zhang, K. Tang, P. Wan, C. Kan, M. Jiang. An electrically driven single microribbon based near-infrared exciton–polariton light-emitting diode. CrystEngComm, 23, 4336-4343(2021).

    [35] M. Liu, M. Jiang, Q. Zhao, K. Tang, S. Sha, B. Li, C. Kan, D. N. Shi. Ultraviolet exciton-polariton light-emitting diode in a ZnO microwire homojunction. ACS Appl. Mater. Interfaces, 15, 13258-13269(2023).

    [36] H. Xu, J. Xu, M. Jiang, M. Liu, K. Tang, C. Kan, D. Shi. Exciton-polariton light-emitting diode based on a single ZnO superlattice microwire heterojunction with performance enhanced by Rh nanostructures. Phys. Chem. Chem. Phys., 25, 5836-5848(2023).

    [37] N. Christogiannis, N. Somaschi, P. Michetti, D. M. Coles, P. G. Savvidis, P. G. Lagoudakis, D. G. Lidzey. Characterizing the electroluminescence emission from a strongly coupled organic semiconductor microcavity LED. Adv. Opt. Mater., 1, 503-509(2013).

    [38] M. Mazzeo, A. Genco, S. Gambino, D. Ballarini, F. Mangione, O. Di Stefano, S. Patanè, S. Savasta, D. Sanvitto, G. Gigli. Ultrastrong light-matter coupling in electrically doped microcavity organic light emitting diodes. Appl. Phys. Lett., 104, 233303(2014).

    [39] A. Genco, A. Ridolfo, S. Savasta, S. Patanè, G. Gigli, M. Mazzeo. Bright polariton Coumarin-based OLEDs operating in the ultrastrong coupling regime. Adv. Opt. Mater., 6, 1800364(2018).

    [40] J. F. Chang, T. Y. Lin, C. F. Hsu, S. Y. Chen, S. Y. Hong, G. S. Ciou, C. C. Jaing, C. C. Lee. Development of a highly efficient, strongly coupled organic light-emitting diode based on intracavity pumping architecture. Opt. Express, 28, 39781-39789(2020).

    [41] J. F. Chang, Y. C. Zheng, C. Y. Chiang, C. K. Huang, C. C. Jaing. Ultrastrong coupling in super yellow polymer microcavities and development of highly efficient polariton light-emitting diodes and light-emitting transistors. Opt. Express, 31, 6849-6861(2023).

    [42] J. Gu, B. Chakraborty, M. Khatoniar, V. M. Menon. A room-temperature polariton light-emitting diode based on monolayer WS2. Nat. Nanotechnol., 14, 1024-1028(2019).

    [43] T. Wang, Z. Zang, Y. Gao, C. Lyu, P. Gu, Y. Yao, K. Peng, K. Watanabe, T. Taniguchi, X. Liu, Y. Gao, W. Bao, Y. Ye. Electrically pumped polarized exciton-polaritons in a halide perovskite microcavity. Nano Lett., 22, 5175-5181(2022).

    [44] P. Bouteyre, H. S. Nguyen, J. S. Lauret, G. Trippe-Allard, G. Delport, F. Ledee, H. Diab, A. Belarouci, C. Seassal, D. Garrot, F. Bretenaker, E. Deleporte. Room-temperature cavity polaritons with 3D hybrid perovskite: toward large-surface polaritonic devices. ACS Photon., 6, 1804-1811(2019).

    [45] T. Liu, C. Yang, Z. Fan, X. Chen, Z. Chen, Y. Su, H. Zhu, F. Sun, T. Jiang, W. Zhu, W. Shen, J. He, H. Zhu, X. Liu, Y. Yang. Spectral narrowing and enhancement of directional emission of perovskite light emitting diode by microcavity. Laser Photon. Rev., 16, 2200091(2022).

    [46] G. F. Burkhard, E. T. Hoke, M. D. McGehee. Accounting for interference, scattering, and electrode absorption to make accurate internal quantum efficiency measurements in organic and other thin solar cells. Adv. Mater., 22, 3293-3297(2010).

    [47] T. Wu, J. Li, Y. Zou, H. Xu, K. Wen, S. Wan, S. Bai, T. Song, J. A. McLeod, S. Duhm, F. Gao, B. Sun. High-performance perovskite light-emitting diode with enhanced operational stability using lithium halide passivation. Angew. Chem. Int. Ed., 59, 4099-4105(2020).

    [48] P. Du, J. Li, L. Wang, L. Sun, X. Wang, X. Xu, L. Yang, J. Pang, W. Liang, J. Luo, Y. Ma, J. Tang. Efficient and large-area all vacuum-deposited perovskite light-emitting diodes via spatial confinement. Nat. Commun., 12, 4751(2021).

    [49] S. K. Kwon, E. H. Lee, K. S. Kim, H. C. Choi, M. J. Park, S. K. Kim, R. Pode, J. H. Kwon. Efficient micro-cavity top emission OLED with optimized Mg:Ag ratio cathode. Opt. Express, 25, 29906-29915(2017).

    [50] C. Zang, S. Liu, M. Xu, R. Wang, C. Cao, Z. Zhu, J. Zhang, H. Wang, L. Zhang, W. Xie, C. S. Lee. Top-emitting thermally activated delayed fluorescence organic light-emitting devices with weak light-matter coupling. Light Sci. Appl., 10, 116(2021).

    [51] J. Wang, R. Su, J. Xing, D. Bao, C. Diederichs, S. Liu, T. C. H. Liew, Z. Chen, Q. Xiong. Room temperature coherently coupled exciton-polaritons in two-dimensional organic-inorganic perovskite. ACS Nano, 12, 8382-8389(2018).

    [52] C. Ouyang, Y. Li, X. Fu, Z. Zeng, L. Huang, S. Liu, X. Wang, T. Gao, A. Pan. Room temperature exciton-polaritons in high-quality 2D Ruddlesden–Popper perovskites (BA)2(MA)n-1PbnI3n+1 (n = 3, 4). Appl. Phys. Lett., 117, 221107(2020).

    [53] F. Tassone, C. Piermarocchi, V. Savona, A. Quattropani, P. Schwendimann. Bottleneck effects in the relaxation and photoluminescence of microcavity polaritons. Phys. Rev. B, 56, 7554-7563(1997).

    [54] Y. Liu, J. Cui, K. Du, H. Tian, Z. He, Q. Zhou, Z. Yang, Y. Deng, D. Chen, X. Zuo, Y. Ren, L. Wang, H. Zhu, B. Zhao, D. Di, J. Wang, R. H. Friend, Y. Jin. Efficient blue light-emitting diodes based on quantum-confined bromide perovskite nanostructures. Nat. Photonics, 13, 760-764(2019).

    [55] L. Wang, J. Lin, Y. Lv, B. Zou, J. Zhao, X. Liu. Red, green, and blue microcavity quantum dot light-emitting devices with narrow line widths. ACS Appl. Nano Mater., 3, 5301-5310(2020).

    [56] J. Lin, Y. Hu, X. Liu. Microcavity-enhanced blue organic light-emitting diode for high-quality monochromatic light source with nonquarterwave structural design. Adv. Opt. Mater., 8, 1901421(2020).

    [57] A. Dodabalapur, L. J. Rothberg, R. H. Jordan, T. M. Miller, R. E. Slusher, J. M. Phillips. Physics and applications of organic microcavity light emitting diodes. J. Appl. Phys., 80, 6954-6964(1996).

    [58] K. Lin, J. Xing, L. N. Quan, F. P. G. de Arquer, X. Gong, J. Lu, L. Xie, W. Zhao, D. Zhang, C. Yan, W. Li, X. Liu, Y. Lu, J. Kirman, E. H. Sargent, Q. Xiong, Z. Wei. Perovskite light-emitting diodes with external quantum efficiency exceeding 20 per cent. Nature, 562, 245-248(2018).

    [59] L. Zhang, F. Yuan, J. Xi, B. Jiao, H. Dong, J. Li, Z. Wu. Suppressing ion migration enables stable perovskite light-emitting diodes with all-inorganic strategy. Adv. Funct. Mater., 30, 2001834(2020).

    [60] Z. Liu, W. Qiu, X. Peng, G. Sun, X. Liu, D. Liu, Z. Li, F. He, C. Shen, Q. Gu, F. Ma, H. L. Yip, L. Hou, Z. Qi, S. J. Su. Perovskite light-emitting diodes with EQE exceeding 28% through a synergetic dual-additive strategy for defect passivation and nanostructure regulation. Adv. Mater., 33, 2103268(2021).

    [61] D. Ma, K. Lin, Y. Dong, H. Choubisa, A. H. Proppe, D. Wu, Y.-K. Wang, B. Chen, P. Li, J. Z. Fan, F. Yuan, A. Johnston, Y. Liu, Y. Kang, Z.-H. Lu, Z. Wei, E. H. Sargent. Distribution control enables efficient reduced-dimensional perovskite LEDs. Nature, 599, 594-598(2021).

    [62] S.-J. Woo, J. S. Kim, T.-W. Lee. Characterization of stability and challenges to improve lifetime in perovskite LEDs. Nat. Photonics, 15, 630-634(2021).

    [63] J. S. Kim, J.-M. Heo, G.-S. Park, S.-J. Woo, C. Cho, H. J. Yun, D.-H. Kim, J. Park, S.-C. Lee, S.-H. Park, E. Yoon, N. C. Greenham, T.-W. Lee. Ultra-bright, efficient and stable perovskite light-emitting diodes. Nature, 611, 688-694(2022).

    Tianyu Liu, Peng Ran, Yirong Su, Zeng Chen, Renchen Lai, Weidong Shen, Yaoguang Ma, Haiming Zhu, Yang (Michael) Yang. Solution-processed halide perovskite microcavity exciton-polariton light-emitting diodes working at room temperature[J]. Photonics Research, 2023, 11(10): 1791
    Download Citation