• Laser & Optoelectronics Progress
  • Vol. 51, Issue 7, 70003 (2014)
Li Linjun1、2、*, Zhang Zhiguo1, Bai Yunfeng2, and Yang Xining3
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • show less
    DOI: 10.3788/lop51.070003 Cite this Article Set citation alerts
    Li Linjun, Zhang Zhiguo, Bai Yunfeng, Yang Xining. Progress and Prospect on Tm,Ho:YAlO3 Laser at 2 μm Wavelength[J]. Laser & Optoelectronics Progress, 2014, 51(7): 70003 Copy Citation Text show less
    References

    [1] X M Duan, B Q Yao, Y J Zhang, et al.. Diode-pumped high efficient Tm:YLF laser output at 1908 nm with neardiffraction limited beam quality[J]. Laser Phys Lett, 2008, 5(5): 347-349.

    [2] Wei Xingbin, Peng Yuefeng, Wang Weimin, et al.. 2 μm pulsed laser with 100 mJ intracavity KTP optical parametric oscillator[J]. Chinese J Lasers, 2010, 37(11): 2762-2765.

    [3] Wang Pu, Liu Jiang. Progress and prospect on ultrafast Tm-doped fiber laser at 2 μm wavelength[J]. Chinese J Lasers, 2013, 40(6): 0601002.

    [4] Fan Fengying, Song Zengyun. Measurement of CO2 concentration with tunable diode laser absorption spectroscopy near 2 μm [J]. Chinese J Lasers, 2012, 39(2): 0215002.

    [5] Wei Lei, Xiao Lei, Han Long, et al.. ZGP optical parametric oscillator pumped by Tm:YAP laser[J]. Chinese J Lasers, 2012, 39(7): 0702006.

    [6] Liu Jiang, Wang Pu. High-power passively mode-locked thulium-doped femtosecond fiber laser at 2.0 μm [J]. Chinese J Lasers, 2012, 39(9): 0902001.

    [7] Liu Jiang, Wang Pu. Thulium-doped all-fiber broadband super fluorescent source at 2 μm wavelength[J]. Chinese J Lasers, 2013, 40(2): 0202006.

    [8] M Schellhorn. Performance of a Ho:YAG thin-disc laser pumped by a diode-pumped 1.9 μm thulium laser[J]. Appl Phys B, 2006, 85(4): 549-552.

    [9] Zhang C H, Yao B Q, Li G, et al.. 2041.3 nm/2054.6 nm simultaneous dual-wavelength single-longitudinal-mode Tm, Ho:YVO4 microchip laser[J]. Laser Phys, 2010, 20(7): 1564-1567.

    [10] A A Lagatsky, X Han, M D Serrano, et al.. Femtosecond (191 fs) NaY(WO4)2 Tm, Ho-codoped laser at 2060 nm[J]. Opt Lett, 2010, 35(18): 3027-3029.

    [11] Xinlu Zhang, Long Yu, Su Zhang, et al.. Diode-pumped continuous wave and passively Q-switched Tm, Ho:LLF laser at 2 μm [J]. Opt Express, 2013, 21(10): 12629-12634.

    [12] L J Li, B Q Yao, Y F Bai, et al.. CW and AO Q-switched operation of a dual-crystal Tm, Ho:GdVO4 laser pumped by two diodes[J]. Laser Phys, 2013, 23(2): 025802.

    [13] Xiaojin Cheng, Shuaiyi Zhang, Jianqiu Xu, et al.. High-power diode-end-pumped Tm:LiLuF4 slab lasers[J]. Opt Express, 2009, 17(17): 14895-14901.

    [14] X L Zhang, L Yu, S Zhang, J Q Zhao, et al.. Passively Q-switched Tm, Ho:LuLiF4 laser with near constant pulse energy and duration[J]. Appl Phys B, 2013, 111(2): 165-168.

    [15] V Jambunathana, X Mateosa, M C Pujola, et al.. Diode-pumped continuous-wave laser operation of co-doped (Ho, Tm):KLu(WO4)2 monoclinic crystal[J]. Optics & Laser Technology, 2013, 54(30): 326-328.

    [16] Yanqiu Du, Baoquan Yao, Xiaoming Duan, et al.. Cr:ZnS saturable absorber passively Q-switched Tm,Ho:GdVO4 laser [J]. Opt Express, 2013, 21(22): 26506-26512.

    [17] Li Tao, Zhao Guangjun, He Xiaoming, et al.. Study on the color change of YAP crystals[J]. Journal of Synthetic Crystals, 2002, 31(5): 456-459.

    [18] Lu Yanling, Wang Jun, Yang Yang, et al.. Study on Tm:YAP crytal growth and spectral characteristic[J]. Journal of Synthetic Crytals, 2006, 21(4): 838-842.

    [19] Yang Yang, Lu Yanling, Wang Jun, et al.. Study on the defects of 2 μm waveband laser crystal Tm:YAP[J]. Journal of Synthetic Crystals, 2007, 36(2): 114-118.

    [20] Hamit Kalaycioglu, Alphan Sennaroglu, Adnan Kurt. Influence of doping concentration on the power performance of diode-pumped continuous-wave Tm3 + :YAlO3 lasers[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2005, 11(3): 667-673.

    [21] M Malinowski, R Piramidowicz, Z Frukacz, et al.. Spectroscopy and upconversion processes in YAlO3:Ho3 + crystals[J]. Optical Materials, 1999, 12(4): 409-423.

    [22] Qin Dong, Guangjun Zhao, Dunhua Cao, et al.. Polarized spectral analysis of Ho3+ ions in biaxial YAlO3 crystal for 2 μm lasers[J]. J Phys D: Appl Phys, 2009, 42(4): 045114.

    [23] B Dischler, H Ennen. Polarized anisotropic photoluminescence of laser-related transitions in YAlO3:Nd and YAlO3:Er and line broadening by resonant lattice phonons [J]. J Appl Phys, 1986, 60(1): 376-382.

    [24] M J Weber, M Bass, K Andringa, et al.. Czochralski growth and properties of YAlO3 laser crystals[J]. Appl Phys Lett, 1969, 15(10): 342–345.

    [25] I F Elder, M J P Payne. YAP versus YAG as a diode-pumped host for thulium[J]. Opt Commun, 1998, 148(4-6): 265-269.

    [26] Marvin J Weber, Michael Bass, Thomas E Varitimos, et al.. Laser action from Ho3 + , Er3 + , and Tm3 + in YAlO3[J]. IEEE J Quantum Electron, 1973, QE-9(11): 1079-1086.

    [27] X Cheng, F Chen, G Zhao, et al.. High-efficiency, high-power, diode-pumped continuous-wave Tm:YAlO3 slab lasers [J]. Appl Phys B, 2009, 97(3): 639–643.

    [28] L J Li, B Q Yao, Z G Wang, et al.. Double diode-pumped continuous wave operation of a c-cut 2044-nm Tm, Ho:YAlO3 laser[J]. Laser Phys Lett, 2009, 6(5): 359-362.

    [29] L J Li, B Q Yao, Z G Wang, et al.. Continuous wave and AO Q-switch operation of a b-cut Tm, Ho:YAP laser with dual wavelengths pumped by a laser diode of 792 nm[J]. Laser Phy, 2010, 20(1): 205-208.

    [30] Baoquan Yao, Xiaoming Duan, Liangliang Zheng, et al.. Continuous-wave and Q-switched operation of a resonantly pumped Ho:YAlO3 laser[J]. Opt Express, 2008, 16(19): 14668 -14674.

    [31] B Q Yao, X T Yang, X M Duan, et al.. Continuous-wave operation of a Ho:YAlO3 laser pumped by a Tm-doped silicon fiber laser[J]. Laser Phys Lett, 2009, 6(7): 509-512.

    [32] X M Duan, B Q Yao, G Li, et al.. High efficient continuous wave operation of a Ho:YAP laser at room temperature[J]. Laser Phys Lett, 2009, 6(4): 279-281.

    [33] X M Duan, B Q Yao, X T Yang, et al.. Room temperature efficient continuous wave and Q-switched operation of a Ho:YAP laser[J]. Appl Phys B, 2009, 96(2-3): 379-383.

    [34] I F Elder, M J P Payne. Lasing in diode-pumped Tm:YAP, Tm, Ho:YAP and Tm, Ho:YLF[J]. Opt Commun, 1998, 145(1): 329-339.

    [35] L J Li, B Q Yao, C W Song, et al.. Continuous wave and AO Q-switch operation Tm, Ho:YAP laser pumped by a laser diode of 798 nm[J]. Laser Phys Lett, 2009, 6(2): 102-104.

    [36] L J Li, B Q Yao, Y L Ju, et al.. Dual diodes end-pumped Q-switch operation of a c-cut 2044-nm Tm, Ho:YAlO3 laser[J]. Laser Phys Lett, 2009, 6(5): 367-369.

    [37] Baoquan Yao, Linjun Li, Liangliang Zheng, et al.. Diode-pumped continuous wave and Q-switched operation of a ccut Tm, Ho:YAlO3 laser[J]. Opt Express, 2008, 16(7): 5075-5081.

    [38] L J Li, B Q Yao, J P Qin, et al.. High power and efficiency of a 2044-nm c-cut Tm, Ho:YAlO3 laser[J]. Laser Phy, 2011, 21(3): 489-492.

    [39] L J Li, B Q Yao, D Y Wu, et al.. High efficient double end-pumped b-cut Tm, Ho:YAlO3 laser[J]. Laser Phys, 2011, 21(3): 446-449.

    [40] L J Li, Y F Bai, X M Duan, et al.. A continuous-wave b-cut Tm,Ho:YAlO3 laser with output 15 W pumped by two laser diodes[J]. Laser Phys Lett, 2013, 10(3): 035802.

    [41] T L Feng, S Z Zhao, K J Yang, et al.. A diode-pumped passively Q-switched Tm, Ho:YAP laser with a single-walled carbon nanotube[J]. Laser Phys Lett, 2013, 10(9): 095001.

    [42] Y L Ju, C H Zhang, F Chen, et al.. Room temperature single longitudinal mode Tm, Ho:YAP microchip laser at 2102.6 nm [J]. Laser Phys, 2011, 21(1): 97-100.

    [43] H Bromberger, K J Yang, D Heinecke, et al.. Comparative investigations on continuous wave operation of a-cut and bcut Tm, Ho:YAlO3 lasers at room temperature[J]. Opt Express, 2011, 19(7): 6505-6513.

    [44] B Q Yao, F Chen, C H Zhang, et al.. Room temperature single-frequency output from a diode-pumped Tm, Ho:YAP laser[J]. Opt Lett, 2011, 36(9): 1554-1556.

    [45] B Q Yao, F Chen, G Li, et al.. Diode pumped operation of 1 mm Tm, Ho:YAP microchip laser[J]. Laser Phys, 2011, 21(12): 2011-2014.

    [46] K J Yang, D C Heinecke, C Kolbl, et al.. Mode-locked Tm, Ho:YAP laser around 2.1 μm [J]. Opt Express, 2013, 21(2): 1574-1580.

    [47] Baoquan Yao, Xiaoming Duan, Liangliang Zheng, et al.. Continuous-wave and Q-switched operation of a resonantly pumped Ho:YAlO3 laser[J]. Opt Express, 2008, 16(19): 14668-14674.

    [48] G L Zhu, X D He, B Q Yao, et al.. Ho:YAP laser intra-cavity pumped by a diode-pumped Tm:YLF laser[J]. Laser Phys, 2013, 23(1): 015002.

    [49] S S Cai, J Kong, B Wu, et al.. Room-temperature cw and pulsed operation of a diode-end-pumped Tm:YAP laser[J]. Appl Phys B, 2008, 90(1): 133-136.

    [50] Igor Razdobreev, Alexander Shestakov. Self-pulsing of a monolithic Tm-doped YAlO3 microlaser[J]. Phys Rev A, 2006, 73(5): 053815.

    [51] Amy C Sullivan, Gregory J Wagner, Douglas Gwin, et al.. High power Q-switched Tm:YAlO3 lasers[C]. Advance statesolid Photonics, 2004, 94(1): 329-331.

    [52] I F Elder, M J P Payne. Comparison of diode-pumped Tm:YAP with Tm:YAG[C]. Advanced Solid State Lasers, 1998, 19(2): 212-217.

    [53] Pavel Cerny, Jan Sulc, Helena Jelinkova. Continuously tunable diode pumped Tm:YAP laser[C]. SPIE, 2006, 6190: 619008.

    CLP Journals

    [1] Li Lu, Guo Pan, Zhang Yinchao, Chen Siying, Chen He. Application of Smoothness Prior Aproach for Coherent Doppler Wind Lidar[J]. Acta Optica Sinica, 2015, 35(7): 728001

    [2] Zhu Guoli. Analysis and Calculation of Conversion Efficiency in High-Repetition-Frequency Ho:YAG laser[J]. Chinese Journal of Lasers, 2015, 42(8): 802014

    [3] Zhang Mei, Yan Fengping, Liu Shuo, Yin Zhi. Research of Stimulated Brillouin Scattering Effect in High-Power Tm3+-Doped Fiber Amplifiers[J]. Chinese Journal of Lasers, 2015, 42(4): 405009

    Li Linjun, Zhang Zhiguo, Bai Yunfeng, Yang Xining. Progress and Prospect on Tm,Ho:YAlO3 Laser at 2 μm Wavelength[J]. Laser & Optoelectronics Progress, 2014, 51(7): 70003
    Download Citation