• Advanced Photonics Nexus
  • Vol. 2, Issue 3, 036015 (2023)
Yize Liang1、2、3, Hongya Wang1、2、3, Xi Zhang1、2、3, Jianzhou Ai1、2、3, Zelin Ma4, Siddharth Ramachandran4, and Jian Wang1、2、3、*
Author Affiliations
  • 1Huazhong University of Science and Technology, Wuhan National Laboratory for Optoelectronics and School of Optical and Electronic Information, Wuhan, China
  • 2Optics Valley Laboratory, Wuhan, China
  • 3Shenzhen Institute of Huazhong University of Science and Technology, Shenzhen, China
  • 4Boston University, College of Engineering, Boston, Massachusetts, United States
  • show less
    DOI: 10.1117/1.APN.2.3.036015 Cite this Article Set citation alerts
    Yize Liang, Hongya Wang, Xi Zhang, Jianzhou Ai, Zelin Ma, Siddharth Ramachandran, Jian Wang. Reconfigurable structured light generation and its coupling to air–core fiber[J]. Advanced Photonics Nexus, 2023, 2(3): 036015 Copy Citation Text show less
    References

    [1] R. Essiambre et al. Capacity limits of optical fiber networks. J. Lightwave Technol., 28, 662-701(2010).

    [2] R. Essiambre, R. W. Tkach. Capacity trends and limits of optical communication networks. Proc. IEEE, 100, 1035-1055(2012).

    [3] Y. Liang et al. Experimental demonstration of visualized multi-core fiber coupling alignment system for inter-core cross talk measurement. Opt. Lett., 47, 3071-3074(2022).

    [4] G. Li et al. Space-division multiplexing: the next frontier in optical communication. Adv. Opt. Photonics, 6, 413-487(2014).

    [5] J. Wang. Advances in communications using optical vortices. Photonics Res., 4, B14-B28(2016).

    [6] J. Wang et al. Terabit free-space data transmission employing orbital angular momentum multiplexing. Nat. Photonics, 6, 488-496(2012).

    [7] Y. Liang et al. Adaptive turbulence compensation and fast auto-alignment link for free-space optical communications. Opt. Express, 29, 40514-40523(2021).

    [8] N. Bozinovic et al. Terabit-scale orbital angular momentum mode division multiplexing in fibers. Science, 340, 1545-1548(2013).

    [9] G. Zhu et al. Scalable mode division multiplexed transmission over a 10-km ring-core fiber using high-order orbital angular momentum modes. Opt. Express, 26, 594-604(2018).

    [10] J. Liu et al. Direct fiber vector eigenmode multiplexing transmission seeded by integrated optical vortex emitters. Light Sci. Appl., 7, 17148(2018).

    [11] J. Zhang et al. Mode-division multiplexed transmission of wavelength-division multiplexing signals over a 100-km single-span orbital angular momentum fiber. Photonics Res., 8, 1236-1242(2020).

    [12] H. Huang et al. Mode division multiplexing using an orbital angular momentum mode sorter and MIMO-DSP over a graded-index few-mode optical fibre. Sci. Rep., 5, 1-7(2015).

    [13] Y. Liang et al. 2.6-km all-fiber orbital angular momentum (OAM) multiplexing link for data center networks (DCNs) using mode select coupler and commercial SFP+ transceivers(2018).

    [14] A. Wang et al. Directly using 8.8-km conventional multi-mode fiber for 6-mode orbital angular momentum multiplexing transmission. Opt. Express, 26, 10038-10047(2018).

    [15] J. Zhang et al. Orbital-angular-momentum mode-group multiplexed transmission over a graded-index ring-core fiber based on receive diversity and maximal ratio combining. Opt. Express, 26, 4243-4257(2018).

    [16] H. Wang et al. Low-loss orbital angular momentum ring-core fiber: design, fabrication and characterization. J. Lightwave Technol., 38, 6327-6333(2020).

    [17] P. Gregg, P. Kristensen, S. Ramachandran. Conservation of orbital angular momentum in air-core optical fibers. Optica, 2, 267-270(2015).

    [18] K. Ingerslev et al. 12 Mode, MIMO-free OAM transmission(2017).

    [19] Q. Zhan. Cylindrical vector beams: from mathematical concepts to applications. Adv. Opt. Photonics, 1, 1-57(2009).

    [20] A. Forbes, M. de Oliveira, M. R. Dennis. Structured light. Nat. Photonics, 15, 253-262(2021).

    [21] A. Rubano et al. Q-plate technology: a progress review. JOSA B, 36, D70-D87(2019).

    [22] M. Piccardo et al. Roadmap on multimode light shaping. J. Opt., 24, 13001(2021).

    [23] H. Rubinsztein-Dunlop et al. Roadmap on structured light. J. Opt., 19, 13001(2016).

    [24] Z. Xie et al. Ultra-broadband on-chip twisted light emitter for optical communications. Light Sci. Appl., 7, 18001(2018).

    [25] M. Padgett, R. Bowman. Tweezers with a twist. Nat. Photonics, 5, 343-348(2011).

    [26] M. P. Lavery et al. Detection of a spinning object using light’s orbital angular momentum. Science, 341, 537-540(2013).

    [27] L. Fang, M. J. Padgett, J. Wang. Sharing a common origin between the rotational and linear Doppler effects. Laser Photonics Rev., 11, 1700183(2017).

    [28] Z. Wan et al. Flexible and robust detection of a remotely rotating target using fiber-guided orbital angular momentum superposed modes(2020).

    [29] Z. Wan et al. Remote measurement of the angular velocity vector based on vectorial Doppler effect using air-core optical fiber. Research (Wash D C), 2022, 9839502(2022).

    [30] L. Yan, P. Kristensen, S. Ramachandran. Vortex fibers for STED microscopy. APL Photonics, 4, 022903(2019).

    [31] J. Wang, Y. Liang. Generation and detection of structured light: a review. Front. Phys., 9, 263(2021).

    [32] Y. Zhang et al. Simultaneous entanglement swapping of multiple orbital angular momentum states of light. Nat. Commun., 8, 1-7(2017).

    [33] J. Liu et al. Multidimensional entanglement transport through single-mode fiber. Sci. Adv., 6, y837(2020).

    [34] T. Wang et al. Generation of femtosecond optical vortex beams in all-fiber mode-locked fiber laser using mode selective coupler. J. Lightwave Technol., 35, 2161-2166(2017).

    [35] Y. Zhao et al. All-fiber mode converter based on long-period fiber gratings written in few-mode fiber. Opt. Lett., 42, 4708-4711(2017).

    [36] Y. Han et al. Controllable all-fiber generation/conversion of circularly polarized orbital angular momentum beams using long period fiber gratings. Nanophotonics, 7, 287-293(2018).

    [37] L. Wang et al. Characterization of OAM fibers using fiber Bragg gratings. Opt. Express, 22, 15653-15661(2014).

    [38] C. Maurer et al. Tailoring of arbitrary optical vector beams. New J. Phys., 9, 78(2007).

    [39] H. Chen et al. Generation of vector beam with space-variant distribution of both polarization and phase. Opt. Lett., 36, 3179-3181(2011).

    [40] S. Liu et al. Generation of arbitrary spatially variant polarization beams with a trapezoid Sagnac interferometer. Opt. Express, 20, 21715-21721(2012).

    [41] S. Li et al. An efficient and robust scheme for controlling the states of polarization in a Sagnac interferometric configuration. Europhys. Lett., 105, 64006(2014).

    [42] P. Li et al. Generation of perfect vectorial vortex beams. Opt. Lett., 41, 2205-2208(2016).

    [43] C. Yang et al. Nonlinear frequency conversion and manipulation of vector beams in a Sagnac loop. Opt. Lett., 44, 219-222(2019).

    [44] P. Vaity, L. Rusch. Perfect vortex beam: Fourier transformation of a Bessel beam. Opt. Lett., 40, 597-600(2015).

    [45] Z. E. Bomzon, V. Kleiner, E. Hasman. Formation of radially and azimuthally polarized light using space-variant subwavelength metal stripe gratings. Appl. Phys. Lett., 79, 1587-1589(2001).

    [46] G. Machavariani et al. Birefringence-induced bifocusing for selection of radially or azimuthally polarized laser modes. Appl. Opt., 46, 3304-3310(2007).

    [47] K. J. Mitchell et al. High-speed spatial control of the intensity, phase and polarisation of vector beams using a digital micro-mirror device. Opt. Express, 24, 29269-29282(2016).

    [48] X. Yi et al. Generation of cylindrical vector vortex beams by two cascaded metasurfaces. Opt. Express, 22, 17207-17215(2014).

    [49] W. Ji et al. Meta-q-plate for complex beam shaping. Sci. Rep., 6, 25528(2016).

    [50] Y. Huang et al. Versatile total angular momentum generation using cascaded J-plates. Opt. Express, 27, 7469-7484(2019).

    Yize Liang, Hongya Wang, Xi Zhang, Jianzhou Ai, Zelin Ma, Siddharth Ramachandran, Jian Wang. Reconfigurable structured light generation and its coupling to air–core fiber[J]. Advanced Photonics Nexus, 2023, 2(3): 036015
    Download Citation