• Photonics Research
  • Vol. 9, Issue 11, 2167 (2021)
Jiaqi Zhu1、2、3、†, He Zhu1、†, Mengjuan Liu2, Yao Wang2, Hanlun Xu2, Nasir Ali2, Huiyong Deng3, Zhiyong Tan4、5, Juncheng Cao4、5, Ning Dai1、3, and Huizhen Wu2、*
Author Affiliations
  • 1Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
  • 2Zhejiang Province Key Laboratory of Quantum Technology and Devices, Department of Physics, and State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027, China
  • 3State Key Laboratory for Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China
  • 4Key Laboratory of Terahertz Solid-State Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
  • 5Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
  • show less
    DOI: 10.1364/PRJ.430960 Cite this Article Set citation alerts
    Jiaqi Zhu, He Zhu, Mengjuan Liu, Yao Wang, Hanlun Xu, Nasir Ali, Huiyong Deng, Zhiyong Tan, Juncheng Cao, Ning Dai, Huizhen Wu. Ultrabroadband and multiband infrared/terahertz photodetectors with high sensitivity[J]. Photonics Research, 2021, 9(11): 2167 Copy Citation Text show less
    References

    [1] A. Rogalski. Infrared detectors: status and trends. Prog. Quantum Electron., 27, 59-210(2003).

    [2] F. Sizov, A. Rogalski. THz detectors. Prog. Quantum Electron., 34, 278-347(2010).

    [3] F. Koppens, T. Mueller, P. Avouris, A. Ferrari, M. Vitiello, M. Polini. Photodetectors based on graphene, other two-dimensional materials and hybrid systems. Nat. Nanotechnol., 9, 780-793(2014).

    [4] A. Dehzangi, J. Li, M. Razeghi. Band-structure-engineered high-gain LWIR photodetector based on a type-II superlattice. Light Sci. Appl., 10, 17(2021).

    [5] E. Mohammadi, M. Ghaffari, N. Behdad. Wide dynamic range, angle-sensing, long-wave infrared detector using nano-antenna arrays. Sci. Rep., 10, 2488(2020).

    [6] G. Rieke. Infrared detector arrays for astronomy. Annu. Rev. Astron. Astrophys., 45, 77-115(2007).

    [7] L. Vicarelli, M. Vitiello, D. Coquillat, A. Lombardo, A. Ferrari, W. Knap, M. Polini, V. Pellegrini, A. Tredicucci. Graphene field-effect transistors as room-temperature terahertz detectors. Nat. Mater., 11, 865-871(2012).

    [8] A. Blain, I. Smail, R. Ivison, J. Kneib, D. Frayer. Submillimeter galaxies. Phys. Rep., 369, 111-176(2002).

    [9] M. Abedin, M. Mlynczak, T. Refaat. Infrared detectors overview in the short-wave infrared to far-infrared for CLARREO mission. Proc. SPIE, 7808, 78080V(2010).

    [10] M. Abedin, T. Refaat, J. Zawodny, S. Sandford, U. Singh, S. Bandra, S. Gunapala, I. Bhat, N. Barnes. Multicolor focal plane array detector technology: a review. Proc. SPIE, 5152, 279-288(2003).

    [11] M. Abedin, T. Refaat, I. Bhat, Y. Xiao, S. Bandra, S. Gunapala. Progress of multicolor single detector to detector array development for remote sensing. Proc. SPIE, 5543, 239-247(2004).

    [12] A. Rogalski, J. Antoszewski, L. Faraone. Third-generation infrared photodetector arrays. J. Appl. Phys., 105, 091101(2009).

    [13] D. Reago, S. Horn, J. Campbell, R. Vollmerhausen. Third-generation imaging sensor system concepts. Proc. SPIE, 3701, 108-117(1999).

    [14] P. Norton, J. Campbell, S. Horn, D. Reago. Third-generation infrared imagers. Proc. SPIE, 4130, 226-236(2000).

    [15] A. Rogalski. Competitive technologies of third generation infrared photon detectors. Opto-Electron. Rev., 14, 84-98(2006).

    [16] D. Dragoman, M. Dragoman. Terahertz fields and applications. Prog. Quantum Electron., 28, 1-66(2004).

    [17] E. Young, J. Davis, C. Thompson, G. Rieke, G. Rivlis. Far-infrared imaging array for SIRTF. Proc. SPIE, 3354, 57-65(1998).

    [18] M. Brun, F. Formanek, A. Yasuda, M. Sekine, N. Ando, Y. Eishii. Terahertz imaging applied to cancer diagnosis. Phys. Med. Biol., 55, 4615-4623(2010).

    [19] J. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, D. Zimdars. THz imaging and sensing for security applications—explosives, weapons and drugs. Semicond. Sci. Technol., 20, S266-S280(2005).

    [20] H. Liu, H. Zhong, N. Karpowicz, Y. Chen, X. Zhang. Terahertz spectroscopy and imaging for defense and security applications. Proc. IEEE, 95, 1514-1527(2007).

    [21] I. Amenabar, F. Lopez, A. Mendikute. In introductory review to THz non-destructive testing of composite mater. J. Infrared Millim. Terahertz Waves, 34, 152-169(2013).

    [22] X. Cai, A. Sushkov, R. Suess, M. Jadidi, G. Jenkins, L. Nyakiti, R. Myers-Ward, S. Li, J. Yan, D. Gaskill, T. Murphy, H. Drew, M. Fuhrer. Sensitive room-temperature terahertz detection via the photothermoelectric effect in graphene. Nat. Nanotechnol., 9, 814-819(2014).

    [23] X. He, N. Fujimura, J. Lloyd, K. Erickson, A. Talin, Q. Zhang, W. Gao, Q. Jiang, Y. Kawano, R. Hauge, F. Léonard, J. Kono. Carbon nanotube terahertz detector. Nano Lett., 14, 3953-3958(2014).

    [24] M. Chen, Y. Wang, J. Wen, H. Chen, W. Ma, F. Fan, Y. Huang, Z. Zhao. Annealing temperature-dependent terahertz thermal-electrical conversion characteristics of three-dimensional microporous graphene. ACS Appl. Mater. Interfaces, 11, 6411-6420(2019).

    [25] J. Li, Z. Li, X. Chen. Infrared and THz thermal detection based on an all polymer device. Sens. Actuators A, 309, 112021(2020).

    [26] X. Lu, L. Sun, P. Jiang, X. Bao. Progress of photodetectors based on the photothermoelectric effect. Adv. Mater., 31, 1902044(2019).

    [27] A. Rogalski. Infrared thermal detectors versus photon detectors. I. Pixel performance. Proc. SPIE, 3182, 14-25(1997).

    [28] S. Stetson, D. Reynolds, M. Stapelbroek, R. Stermer. Design and performance of blocked-impurity-band detector focal plane arrays. Proc. SPIE, 686, 48-65(1986).

    [29] N. Haegel. BIB detector development for the far infrared: from Ge to GaAs. Proc. SPIE, 4999, 182-194(2003).

    [30] H. Hogue, R. Mattson, M. Stapelbroek, S. Masterjohn, M. Larsen, J. Elwell. Focal plane detectors for the WISE 12 and 23 μm bands. Proc. SPIE, 6660, 66600S(2007).

    [31] P. Love, A. Hoffman, N. Lum, K. Ando, J. Rosbeck, W. Ritchie, N. Therrien, R. Holcombe, E. Corrales. 1024×1024 Si:As IBC detectors arrays for JWST MIRI. Proc. SPIE, 5902, 590209(2005).

    [32] F. Szmulowicz, F. Madarasz. Blocked impurity band detectors—an analytical model: figures of merit. J. Appl. Phys., 62, 2533-2540(1987).

    [33] N. Haegel, S. Samperi, A. White. Electric field and responsivity modeling for far-infrared blocked impurity band detectors. J. Appl. Phys., 93, 1305-1310(2003).

    [34] K. Liao, N. Li, C. Wang, L. Li, Y. Jing, J. Wen, M. Li, H. Wang, X. Zhou, Z. Li, W. Lu. Extended mode in blocked impurity band detectors for terahertz radiation detection. Appl. Phys. Lett., 105, 143501(2014).

    [35] H. Zhu, J. Xu, J. Zhu, M. Wang, H. Wu, N. Li, N. Dai. The effect of infrared plasmon on the performance of Si-based THz detectors. J. Mater. Sci. Mater. Electron., 28, 839-844(2017).

    [36] H. Zhu, Z. Weng, J. Zhu, H. Wu, N. Li, N. Dai. Comparison of photoresponse of Si-based BIB THz detectors. IEEE Trans. Electron Devices, 64, 1094-1099(2017).

    [37] H. Zhu, Z. Weng, J. Zhu, J. Xu, H. Wu, N. Dai. Surface plasmon enhanced Si-based BIB terahertz detectors. Appl. Phys. Lett., 111, 053505(2017).

    [38] J. Zhu, H. Zhu, H. Xu, Z. Weng, H. Wu. Ge-based mid-infrared blocked-impurity-band photodetectors. Infrared Phys. Technol., 92, 13-17(2018).

    [39] J. Zhu, H. Xu, K. Li, H. Zhu, N. Dai, H. Wu. Ge-based triple-band infrared photodetector. Appl. Phys. Express, 11, 114102(2018).

    [40] H. Zhu, J. Zhu, H. Xu, K. Li, C. Cai, H. Wu. Design and fabrication of plasmonic tuned THz detectors by periodic hole structures. Infrared Phys. Technol., 99, 45-48(2019).

    [41] Y. Chen, B. Wang, Y. Zang, C. Zhang, H. Zhang, Y. Yuan, D. Zhou, L. Hou, M. Pan, X. Wang. The high-performance imaging verification of Si:P blocked impurity band detector for very-long-wave-infrared spectral range. IEEE J. Quantum Electron., 56, 4000506(2020).

    [42] T. Kasuya. A theory of impurity conduction I. J. Phys. Soc. Jpn., 13, 1096-1110(1958).

    [43] J. Beeman, S. Goyal, L. Reichertz, E. Haller. Ion-implanted Ge:B far-infrared blocked-impurity-band detectors. Infrared Phys. Technol., 51, 60-65(2007).

    [44] https://www.brukeroptics.com. https://www.brukeroptics.com

    [45] W. Tennant, M. Thomas, L. Kozlowski, W. McLevige, D. Edwall, M. Zandian, K. Spariosu, G. Hildebrandt, V. Gil, P. Ely, M. Muzilla, A. Stoltz, J. Dinan. A novel simultaneous unipolar multispectral integrated technology approach for HgCdTe IR detectors and focal plane arrays. J. Electron. Mater., 30, 590-594(2001).

    [46] S. Gunapala, S. Bandara, J. Liu, B. Rafol, J. Mumolo. 640 × 512 pixel long-wavelength infrared narrow-band, multi-band, and broad-band QWIP focal plane arrays. IEEE Trans. Electron Dev., 50, 2353-2360(2004).

    [47] E. Huang, M. Razeghi. World’s first demonstration of type-II superlattice dual band 640×512 LWIR focal plane array. Proc. SPIE, 8268, 82680Z(2012).

    [48] S. Krishna, D. Forman, S. Annamalai, P. Dowd. Demonstration of a 320×256 two-color focal plane array using InAs/InGaAs quantum dots in well detectors. Appl. Phys. Lett., 86, 193501(2005).

    [49] K. Jóźwikowski, A. Rogalski. Numerical analysis of three-color HgCdTe detectors. Opto-Electron. Rev., 15, 215-222(2007).

    [50] D. Watson, J. Huffman. Germanium blocked-impurity-band far-infrared detectors. Appl. Phys. Lett., 52, 1602-1604(1998).

    [51] M. Werner, T. Roellig, F. Low, G. Rieke, M. Rieke, W. Hoffmann, E. Young, J. Houck, B. Brandl, G. Fazio, J. Hora, R. Gehrz, G. Helou, B. Soifer, J. Stauffer, J. Keene, P. Eisenhardt, D. Gallagher, T. Gautier, W. Irace, C. Lawrence, L. Simmons, J. Cleve, M. Jura, E. Wright, D. Cruikshank. The spitzer space telescope mission. Astrophys. J. Suppl. Ser., 154, 1-9(2004).

    [52] K. Liao, N. Li, X. Liu, L. Huang, Q. Zeng, X. Zhou, Z. Li. Ion-implanted Si:P blocked-impurity-band photodetectors for far-infrared and terahertz radiation detection. Proc. SPIE, 8909, 890913(2013).

    [53] H. Haesslein, R. Sielemann, C. Zistl. Vacancies and self-interstitials in germanium observed by perturbed angular correlation spectroscopy. Phys. Rev. Lett., 80, 2626-2629(1998).

    [54] A. Silva, A. Janotti, A. Fazzio, R. Baierle, R. Mota. Self-interstitial defect in germanium. Phys. Rev. B, 62, 9903-9906(2000).

    [55] A. Carvalho, R. Jones, C. Janke, J. Goss, P. Briddon, J. Coutinho. Self-interstitial in germanium. Phys. Rev. Lett., 99, 175502(2007).

    [56] A. Carvalho, R. Jones, J. Goss, C. Janke, S. Öberg, P. Briddon. First-principles study of the diffusion mechanisms of the self-interstitial in germanium. J. Phys. Condens. Matter, 20, 135220(2008).

    [57] J. Bourgoin, F. Mollot. Behaviour of primary defects in electron-irradiated germanium. Phys. Status Solidi B, 43, 343-355(1971).

    [58] T. Flanagan, E. Klontz. Bombardment-produced defects in P-type germanium at low temperatures. Phys. Rev., 167, 789-800(1967).

    [59] V. Markevich, I. Hawkins, A. Peaker, K. Emtsev, V. Emtsev, V. Litvinov. Vacancy-group-V-impurity atom pairs in Ge crystals doped with P, As, Sb, and Bi. Phys. Rev. B, 70, 235213(2004).

    [60] J. Coutinho, S. Öberg, V. Torres, M. Barroso, R. Jones, P. Briddon. Donor-vacancy complexes in Ge: cluster and supercell calculations. Phys. Rev. B, 73, 235213(2006).

    [61] S. Brotzmann, H. Bracht, J. Hansen, A. Larsen, E. Simoen, E. Haller, J. Christensen, P. Werner. Diffusion and defect reactions between donors, C, and vacancies in Ge. I. Experimental results. Phys. Rev. B, 77, 235207(2008).

    [62] A. Rogalski. Infrared Detectors, 34-35(2011).

    [63] F. Szmulowicz, F. Madarasz, J. Diller. Temperature dependence of the figures of merit for blocked impurity band detectors. J. Appl. Phys., 63, 5583-5588(1988).

    [64] C. Wang, N. Li, N. Dai, W. Shi, G. Hu. Ion-implanted Si:As blocked impurity band detectors for VLWIR detection. J. Infrared Millim. Waves, 39, 290-294(2020).

    [65] http://www.irassociates.com. http://www.irassociates.com

    [66] M. Graf, G. Scalari, D. Hofstetter, J. Faist. Terahertz range quantum well infrared photodetector. Appl. Phys. Lett., 84, 475-477(2004).

    [67] X. Su, J. Yang, P. Bhattacharya, G. Ariyawansa, A. Perera. Terahertz detection with tunneling quantum dot intersublevel photodetector. Appl. Phys. Lett., 89, 031117(2006).

    [68] J. Yan, M. Kim, J. Elle, A. Sushkov, G. Jenkins, H. Milchberg, M. Fuhrer, H. Drew. Dual-gated bilayer graphene hot-electron bolometer. Nat. Nanotechnol., 7, 472-478(2012).

    Jiaqi Zhu, He Zhu, Mengjuan Liu, Yao Wang, Hanlun Xu, Nasir Ali, Huiyong Deng, Zhiyong Tan, Juncheng Cao, Ning Dai, Huizhen Wu. Ultrabroadband and multiband infrared/terahertz photodetectors with high sensitivity[J]. Photonics Research, 2021, 9(11): 2167
    Download Citation