• Opto-Electronic Engineering
  • Vol. 44, Issue 8, 805 (2017)
Guanglie Hong1, Yanbo Zhou1、2, Rong Shu1, and Wuhu Lei3
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • show less
    DOI: 10.3969/j.issn.1003-501x.2017.08.007 Cite this Article
    Guanglie Hong, Yanbo Zhou, Rong Shu, Wuhu Lei. Spectral analysis made by Mach–Zehnder interferometer for atmospheric backscattering[J]. Opto-Electronic Engineering, 2017, 44(8): 805 Copy Citation Text show less
    References

    [1] Shipley S T, Tracy D H, Eloranta E W, et al. High spectral resolution lidar to measure optical scattering properties of atmospheric aerosols. 1: theory and instrumentation[J]. Applied Optics, 1983, 22(23): 3716–3724.

    [2] Sroga J T, Eloranta E W, Shipley S T, et al. High spectral resolution lidar to measure optical scattering properties of atmospheric aerosols. 2: calibration and data analysis[J]. Ap-plied Optics, 1983, 22(23): 3725–3732.

    [3] Shimizu H, Lee S A, She C Y. High spectral resolution lidar system with atomic blocking filters for measuring atmospheric parameters[J]. Applied Optics, 1983, 22(9): 1373–1381.

    [4] Hair J W, Caldwell L M, Krueger D A, et al. High-spectral-resolution lidar with iodine-vapor filters: meas-urement of atmospheric-state and aerosol profiles[J]. Applied Optics, 2001, 40(30): 5280–5294.

    [5] Voss E, Weitkamp C, Michaelis W. Lead-vapor filters for high-spectral-resolution temperature lidar[J]. Applied Optics, 1994, 33(15): 3250–3260.

    [6] Flesia C, Korb C L. Theory of the double-edge molecular technique for Doppler lidar wind measurement[J]. Applied Optics, 1999, 38(3): 432–440.

    [7] McKay J A. Modeling of direct detection Doppler wind lidar. I. The edge technique[J]. Applied Optics, 1998, 37(27): 6480–6486.

    [8] Chemyakin E, Müller D, Burton S, et al. Arrange and average algorithm for the retrieval of aerosol parameters from multi-wavelength high spectral-resolution lidar/Raman lidar data[J]. Applied Optics, 2014, 53(31): 7252–7266.

    [9] Nishizawa T, Sugimoto N, Matsui I. Development of a du-al-wavelength high-spectral-resolution lidar[J]. Proceedings of SPIE, 2010, 7860: 78600D.

    [10] Hair J W, Hostetler C A, Cook A L, et al. Airborne high spectral resolution Lidar for profiling aerosol optical properties[J]. Applied Optics, 2008, 47(36): 6734–6752.

    [11] Lefebvre A, Hélière A, Albi an A P, et al. EarthCARE mission, overview, implementation approach, and development sta-tus[J]. Proceedings of SPIE, 2014, 9264: 926403.

    [12] Liu Zhishen, Bi Decang, Song Xiaoquan, et al. Io-dine-filter-based high spectral resolution lidar for atmospheric temperature measurements[J]. Optics Letters, 2009, 34(18): 2712–2714.

    [13] Liu Zhishen, Liu Bingyi, Wu Songhua, et al. A high spatial and temporal resolution mobile incoherent Doppler lidar for sea surface wind measurements[J]. Optics Letters, 2008, 33(13): 1485–1487.

    [14] Liu Dong, Hostetler C, Miller I, et al. System analysis of a tilted field-widened Michelson interferometer for high spectral reso-lution lidar[J]. Optics Express, 2012, 20(2): 1406–1420.

    [15] Wang Guocheng, Sun Dongsong, Duan Lianfei, et al. Analysis and design of Fabry-Pérot etalon of doppler wind lidar[J]. Acta Optica Sinica, 2011, 31(3): 0301001.

    [16] Wang Yahui, Liu Jiqiao, Chen Weibiao, et al. Detection technology of atmospheric Doppler frequency shift based on Fizeau interferometer[J]. Chinese Journal of Lasers, 2016, 43(3): 0308005.

    [17] Hua Dengxin, Kobayashi T. Ultraviolet Rayleigh-Mie lidar by use of a multicavity Fabry-Perot filter for accurate temperature profiling of the troposphere[J]. Applied Optics, 2005, 44(30): 6474–6478.

    [18] Bruneau D, Pelon J, Blouzon F, et al. 355-nm high spectral resolution airborne lidar LNG: system description and first re-sults[J]. Applied Optics, 2015, 54(29): 8776–8785.

    [19] Smith J A, Chu Xinzhao. Investigation of a field-widened Mach-Zehnder receiver to extend Fe Doppler lidar wind measurements from the thermosphere to the ground[J]. Ap-plied Optics, 2016, 55(6): 1366–1380.

    [20] Yang Guoguang, Song Feijun. Higher physics optics[M]. 2nd ed. Hefei: University of Science & Technology China Press, 2008: 181–184.

    CLP Journals

    [1] XIA Yuning, WANG Zhao, ZHANG Yun, SHEN Fahua, QIU Chengqun, XU Hua. Mach-Zehnder interferometer spectral characteristics and incident field of view widening technology[J]. Chinese Journal of Quantum Electronics, 2021, 38(6): 796

    Guanglie Hong, Yanbo Zhou, Rong Shu, Wuhu Lei. Spectral analysis made by Mach–Zehnder interferometer for atmospheric backscattering[J]. Opto-Electronic Engineering, 2017, 44(8): 805
    Download Citation