• Chinese Journal of Lasers
  • Vol. 51, Issue 1, 0102002 (2024)
Jiale Yong* and Dong Wu
Author Affiliations
  • Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230026, Anhui , China
  • show less
    DOI: 10.3788/CJL231364 Cite this Article Set citation alerts
    Jiale Yong, Dong Wu. Bioinspired Controlling the Surface Wettability of Materials by Femtosecond Laser: Current Progress and Challenges (Invited)[J]. Chinese Journal of Lasers, 2024, 51(1): 0102002 Copy Citation Text show less
    References

    [1] Liu M J, Wang S T, Jiang L. Nature-inspired superwettability systems[J]. Nature Reviews Materials, 2, 17036(2017).

    [2] Zhang W L, Wang D H, Sun Z N et al. Robust superhydrophobicity: mechanisms and strategies[J]. Chemical Society Reviews, 50, 4031-4061(2021).

    [3] Yao X, Song Y L, Jiang L. Applications of bio-inspired special wettable surfaces[J]. Advanced Materials, 23, 719-734(2011).

    [4] Jeevahan J, Chandrasekaran M, Joseph G B et al. Superhydrophobic surfaces: a review on fundamentals, applications, and challenges[J]. Journal of Coatings Technology and Research, 15, 231-250(2018).

    [5] Tian Y, Su B, Jiang L. Interfacial material system exhibiting superwettability[J]. Advanced Materials, 26, 6872-6897(2014).

    [6] Zhu Z P, Zheng S, Peng S et al. Superlyophilic interfaces and their applications[J]. Advanced Materials, 29, 1703120(2017).

    [7] Liu M J, Zheng Y M, Zhai J et al. Bioinspired super-antiwetting interfaces with special liquid-solid adhesion[J]. Accounts of Chemical Research, 43, 368-377(2010).

    [8] Tang X, Tian Y, Tian X W et al. Design of multi-scale textured surfaces for unconventional liquid harnessing[J]. Materials Today, 43, 62-83(2021).

    [9] Xia F, Jiang L. Bio-inspired, smart, multiscale interfacial materials[J]. Advanced Materials, 20, 2842-2858(2008).

    [10] Xu J K, Xiu S Y, Lian Z X et al. Bioinspired materials for droplet manipulation: principles, methods and applications[J]. Droplet, 1, 11-37(2022).

    [11] Darmanin T, Guittard F. Superhydrophobic and superoleophobic properties in nature[J]. Materials Today, 18, 273-285(2015).

    [12] Bhushan B. Biomimetics: lessons from nature: an overview[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 367, 1445-1486(2009).

    [13] Stratakis E, Bonse J, Heitz J et al. Laser engineering of biomimetic surfaces[J]. Materials Science and Engineering: Reports, 141, 100562(2020).

    [14] Barthlott W, Neinhuis C. Purity of the sacred lotus, or escape from contamination in biological surfaces[J]. Planta, 202, 1-8(1997).

    [15] Ragesh P, Ganesh V A, Nair S V et al. A review on ‘self-cleaning and multifunctional materials’[J]. Journal of Materials Chemistry A, 2, 14773-14797(2014).

    [16] Gao X F, Jiang L. Water-repellent legs of water striders[J]. Nature, 432, 36(2004).

    [17] Gao X, Yan X, Yao X et al. The dry-style antifogging properties of mosquito compound eyes and artificial analogues prepared by soft lithography[J]. Advanced Materials, 19, 2213-2217(2007).

    [18] Barthlott W, Schimmel T, Wiersch S et al. The Salvinia paradox: superhydrophobic surfaces with hydrophilic pins for air retention under water[J]. Advanced Materials, 22, 2325-2328(2010).

    [19] Parker A R, Lawrence C R. Water capture by a desert beetle[J]. Nature, 414, 33-34(2001).

    [20] Liu M J, Wang S T, Wei Z X et al. Bioinspired design of a superoleophobic and low adhesive water/solid interface[J]. Advanced Materials, 21, 665-669(2009).

    [21] Wong T S, Kang S H, Tang S K Y et al. Bioinspired self-repairing slippery surfaces with pressure-stable omniphobicity[J]. Nature, 477, 443-447(2011).

    [22] Si Y F, Dong Z C, Jiang L. Bioinspired designs of superhydrophobic and superhydrophilic materials[J]. ACS Central Science, 4, 1102-1112(2018).

    [23] Wen L P, Tian Y, Jiang L. Bioinspired super-wettability from fundamental research to practical applications[J]. Angewandte Chemie International Edition, 54, 3387-3399(2015).

    [24] Liu K S, Yao X, Jiang L. Recent developments in bio-inspired special wettability[J]. Chemical Society Reviews, 39, 3240-3255(2010).

    [25] Wang D H, Sun Q Q, Hokkanen M J et al. Design of robust superhydrophobic surfaces[J]. Nature, 582, 55-59(2020).

    [26] Cao M Y, Jiang L. Superwettability integration: concepts, design and applications[J]. Surface Innovations, 4, 180-194(2016).

    [27] Su B, Tian Y, Jiang L. Bioinspired interfaces with superwettability: from materials to chemistry[J]. Journal of the American Chemical Society, 138, 1727-1748(2016).

    [28] Jiang T, Guo Z G, Liu W M. Biomimetic superoleophobic surfaces: focusing on their fabrication and applications[J]. Journal of Materials Chemistry A, 3, 1811-1827(2015).

    [29] Wang J N, Zhang Y L, Liu Y et al. Recent developments in superhydrophobic graphene and graphene-related materials: from preparation to potential applications[J]. Nanoscale, 7, 7101-7114(2015).

    [30] Teisala H, Tuominen M, Kuusipalo J. Superhydrophobic coatings on cellulose-based materials: fabrication, properties, and applications[J]. Advanced Materials Interfaces, 1, 1300026(2014).

    [31] Das S, Kumar S, Samal S K et al. A review on superhydrophobic polymer nanocoatings: recent development and applications[J]. Industrial & Engineering Chemistry Research, 57, 2727-2745(2018).

    [32] Milionis A, Loth E, Bayer I S. Recent advances in the mechanical durability of superhydrophobic materials[J]. Advances in Colloid and Interface Science, 229, 57-79(2016).

    [33] Wen G, Guo Z G, Liu W M. Biomimetic polymeric superhydrophobic surfaces and nanostructures: from fabrication to applications[J]. Nanoscale, 9, 3338-3366(2017).

    [34] Si Y F, Guo Z G. Superhydrophobic nanocoatings: from materials to fabrications and to applications[J]. Nanoscale, 7, 5922-5946(2015).

    [35] Yong J L, Chen F, Yang Q et al. Superoleophobic surfaces[J]. Chemical Society Reviews, 46, 4168-4217(2017).

    [36] Pan S J, Guo R, Björnmalm M et al. Coatings super-repellent to ultralow surface tension liquids[J]. Nature Materials, 17, 1040-1047(2018).

    [37] Nishimoto S, Bhushan B. Bioinspired self-cleaning surfaces with superhydrophobicity, superoleophobicity, and superhydrophilicity[J]. RSC Advances, 3, 671-690(2013).

    [38] Lü P, Zhang Y L, Han D D et al. Directional droplet transport on functional surfaces with superwettabilities[J]. Advanced Materials Interfaces, 8, 2100043(2021).

    [39] Lin F Y, Wo K Y, Fan X J et al. Directional transport of underwater bubbles on solid substrates: principles and applications[J]. ACS Applied Materials & Interfaces, 15, 10325-10340(2023).

    [40] Hou L L, Liu X F, Ge X R et al. Designing of anisotropic gradient surfaces for directional liquid transport: fundamentals, construction, and applications[J]. The Innovation, 4, 100508(2023).

    [41] Xue Z X, Cao Y Z, Liu N et al. Special wettable materials for oil/water separation[J]. Journal of Materials Chemistry A, 2, 2445-2460(2014).

    [42] Wang B, Liang W X, Guo Z G et al. Biomimetic super-lyophobic and super-lyophilic materials applied for oil/water separation: a new strategy beyond nature[J]. Chemical Society Reviews, 44, 336-361(2015).

    [43] Yong J L, Huo J L, Chen F et al. Oil/water separation based on natural materials with super-wettability: recent advances[J]. Physical Chemistry Chemical Physics, 20, 25140-25163(2018).

    [44] Lü J Y, Song Y L, Jiang L et al. Bio-inspired strategies for anti-icing[J]. ACS Nano, 8, 3152-3169(2014).

    [45] Kreder M J, Alvarenga J, Kim P et al. Design of anti-icing surfaces: smooth, textured or slippery?[J]. Nature Reviews Materials, 1, 15003(2016).

    [46] Stratakis E, Ranella A, Fotakis C. Biomimetic micro/nanostructured functional surfaces for microfluidic and tissue engineering applications[J]. Biomicrofluidics, 5, 013411(2011).

    [47] Shen L Y, Wang B L, Wang J L et al. Asymmetric free-standing film with multifunctional anti-bacterial and self-cleaning properties[J]. ACS Applied Materials & Interfaces, 4, 4476-4483(2012).

    [48] Jin H C, Tian L M, Bing W et al. Bioinspired marine antifouling coatings: status, prospects, and future[J]. Progress in Materials Science, 124, 100889(2022).

    [49] Genzer J, Efimenko K. Recent developments in superhydrophobic surfaces and their relevance to marine fouling: a review[J]. Biofouling, 22, 339-360(2006).

    [50] Zhang S N, Huang J Y, Chen Z et al. Bioinspired special wettability surfaces: from fundamental research to water harvesting applications[J]. Small, 13, 1602992(2017).

    [51] Ju J, Bai H, Zheng Y M et al. A multi-structural and multi-functional integrated fog collection system in cactus[J]. Nature Communications, 3, 1247(2012).

    [52] Jokinen V, Sainiemi L, Franssila S. Complex droplets on chemically modified silicon nanograss[J]. Advanced Materials, 20, 3453-3456(2008).

    [53] Pan S J, Kota A K, Mabry J M et al. Superomniphobic surfaces for effective chemical shielding[J]. Journal of the American Chemical Society, 135, 578-581(2013).

    [54] Zhan Z B, Li Z H, Yu Z et al. Superhydrophobic Al surfaces with properties of anticorrosion and reparability[J]. ACS Omega, 3, 17425-17429(2018).

    [55] Shi F, Niu J, Liu J et al. Towards understanding why a superhydrophobic coating is needed by water striders[J]. Advanced Materials, 19, 2257-2261(2007).

    [56] Yong J L, Yang Q, Chen F et al. A bioinspired planar superhydrophobic microboat[J]. Journal of Micromechanics and Microengineering, 24, 035006(2014).

    [57] Zhan Z B, ElKabbash M, Cheng J L et al. Highly floatable superhydrophobic metallic assembly for aquatic applications[J]. ACS Applied Materials & Interfaces, 11, 48512-48517(2019).

    [58] Songok J, Tuominen M, Teisala H et al. Paper-based microfluidics: fabrication technique and dynamics of capillary-driven surface flow[J]. ACS Applied Materials & Interfaces, 6, 20060-20066(2014).

    [59] Wang S L, Wang T Q, Ge P et al. Controlling flow behavior of water in microfluidics with a chemically patterned anisotropic wetting surface[J]. Langmuir, 31, 4032-4039(2015).

    [60] Sugioka K, Cheng Y. Ultrafast lasers: reliable tools for advanced materials processing[J]. Light: Science & Applications, 3, e149(2014).

    [61] Vorobyev A Y, Guo C L. Direct femtosecond laser surface nano/microstructuring and its applications[J]. Laser & Photonics Reviews, 7, 385-407(2013).

    [62] Lin Z Y, Hong M H. Femtosecond laser precision engineering: from micron, submicron, to nanoscale[J]. Ultrafast Science, 2021, 9783514(2021).

    [63] Yong J L, Yang Q, Guo C L et al. A review of femtosecond laser-structured superhydrophobic or underwater superoleophobic porous surfaces/materials for efficient oil/water separation[J]. RSC Advances, 9, 12470-12495(2019).

    [64] Chong T C, Hong M H, Shi L P. Laser precision engineering: from microfabrication to nanoprocessing[J]. Laser & Photonics Reviews, 4, 123-143(2010).

    [65] Sugioka K, Cheng Y. Femtosecond laser three-dimensional micro- and nanofabrication[J]. Applied Physics Reviews, 1, 041303(2014).

    [66] Zhang D S, Gökce B, Barcikowski S. Laser synthesis and processing of colloids: fundamentals and applications[J]. Chemical Reviews, 117, 3990-4103(2017).

    [67] Wang S, Jiang L. Definition of superhydrophobic states[J]. Advanced Materials, 19, 3423-3424(2007).

    [68] Wenzel R N. Resistance of solid surfaces to wetting by water[J]. Industrial & Engineering Chemistry, 28, 988-994(1936).

    [69] Cassie A B D, Baxter S. Wettability of porous surfaces[J]. Transactions of the Faraday Society, 40, 546-551(1944).

    [70] Yong J L, Peng Y B, Wang X W et al. Self-driving underwater “aerofluidics”[J]. Advanced Science, 10, 2301175(2023).

    [71] Yong J L, Chen F, Li M J et al. Remarkably simple achievement of superhydrophobicity, superhydrophilicity, underwater superoleophobicity, underwater superoleophilicity, underwater superaerophobicity, and underwater superaerophilicity on femtosecond laser ablated PDMS surfaces[J]. Journal of Materials Chemistry A, 5, 25249-25257(2017).

    [72] Yong J L, Singh S C, Zhan Z B et al. Femtosecond-laser-produced underwater “superpolymphobic” nanorippled surfaces: repelling liquid polymers in water for applications of controlling polymer shape and adhesion[J]. ACS Applied Nano Materials, 2, 7362-7371(2019).

    [73] Wolfe D B, Ashcom J B, Hwang J C et al. Customization of poly(dimethylsiloxane) stamps by micromachining using a femtosecond-pulsed laser[J]. Advanced Materials, 15, 62-65(2003).

    [74] Bonse J, Baudach S, Krüger J et al. Femtosecond laser ablation of silicon-modification thresholds and morphology[J]. Applied Physics A, 74, 19-25(2002).

    [75] Yong J L, Yang Q, Chen F et al. Reversible underwater lossless oil droplet transportation[J]. Advanced Materials Interfaces, 2, 1400388(2015).

    [76] Bai X, Yang Q, Fang Y et al. Anisotropic, adhesion-switchable, and thermal-responsive superhydrophobicity on the femtosecond laser-structured shape-memory polymer for droplet manipulation[J]. Chemical Engineering Journal, 400, 125930(2020).

    [77] Yong J L, Chen F, Yang Q et al. Photoinduced switchable underwater superoleophobicity-superoleophilicity on laser modified titanium surfaces[J]. Journal of Materials Chemistry A, 3, 10703-10709(2015).

    [78] Chen F, Zhang D S, Yang Q et al. Bioinspired wetting surface via laser microfabrication[J]. ACS Applied Materials & Interfaces, 5, 6777-6792(2013).

    [79] Yong J L, Chen F, Yang Q et al. Femtosecond laser controlled wettability of solid surfaces[J]. Soft Matter, 11, 8897-8906(2015).

    [80] Yong J L, Chen F, Yang Q et al. A review of femtosecond-laser-induced underwater superoleophobic surfaces[J]. Advanced Materials Interfaces, 5, 1870033(2018).

    [81] Zhang Y Y, Jiao Y L, Li C Z et al. Bioinspired micro/nanostructured surfaces prepared by femtosecond laser direct writing for multi-functional applications[J]. International Journal of Extreme Manufacturing, 2, 032002(2020).

    [82] Yong J L, Yang Q, Hou X et al. Nature-inspired superwettability achieved by femtosecond lasers[J]. Ultrafast Science, 2022, 9895418(2022).

    [83] Vorobyev A Y, Guo C L. Metal pumps liquid uphill[J]. Applied Physics Letters, 94, 224102(2009).

    [84] Vorobyev A Y, Guo C L. Laser turns silicon superwicking[J]. Optics Express, 18, 6455-6460(2010).

    [85] Vorobyev A Y, Guo C L. Water sprints uphill on glass[J]. Journal of Applied Physics, 108, 123512(2010).

    [86] Feng L, Li S, Li Y et al. Super-hydrophobic surfaces: from natural to artificial[J]. Advanced Materials, 14, 1857-1860(2002).

    [87] Yong J L, Chen F, Fang Y et al. Bioinspired design of underwater superaerophobic and superaerophilic surfaces by femtosecond laser ablation for anti- or capturing bubbles[J]. ACS Applied Materials & Interfaces, 9, 39863-39871(2017).

    [88] Yong J L, Chen F, Yang Q et al. Controllable adhesive superhydrophobic surfaces based on PDMS microwell arrays[J]. Langmuir, 29, 3274-3279(2013).

    [89] Yong J L, Yang Q, Chen F et al. Superhydrophobic PDMS surfaces with three-dimensional (3D) pattern-dependent controllable adhesion[J]. Applied Surface Science, 288, 579-583(2014).

    [90] Yong J L, Chen F, Yang Q et al. Femtosecond laser weaving superhydrophobic patterned PDMS surfaces with tunable adhesion[J]. The Journal of Physical Chemistry C, 117, 24907-24912(2013).

    [91] Yong J L, Yang Q, Chen F et al. A simple way to achieve superhydrophobicity, controllable water adhesion, anisotropic sliding, and anisotropic wetting based on femtosecond-laser-induced line-patterned surfaces[J]. Journal of Materials Chemistry A, 2, 5499-5507(2014).

    [92] Yong J L, Fang Y, Chen F et al. Femtosecond laser ablated durable superhydrophobic PTFE films with micro-through-holes for oil/water separation: separating oil from water and corrosive solutions[J]. Applied Surface Science, 389, 1148-1155(2016).

    [93] Fang Y, Yong J L, Chen F et al. Durability of the tunable adhesive superhydrophobic PTFE surfaces for harsh environment applications[J]. Applied Physics A, 122, 827(2016).

    [94] Yong J L, Yang Q, Huo J L et al. Underwater gas self-transportation along femtosecond laser-written open superhydrophobic surface microchannels (<100 µm) for bubble/gas manipulation[J]. International Journal of Extreme Manufacturing, 4, 015002(2022).

    [95] Baldacchini T, Carey J E, Zhou M et al. Superhydrophobic surfaces prepared by microstructuring of silicon using a femtosecond laser[J]. Langmuir, 22, 4917-4919(2006).

    [96] Zorba V, Stratakis E, Barberoglou M et al. Biomimetic artificial surfaces quantitatively reproduce the water repellency of a lotus leaf[J]. Advanced Materials, 20, 4049-4054(2008).

    [97] Barberoglou M, Zorba V, Stratakis E et al. Bio-inspired water repellent surfaces produced by ultrafast laser structuring of silicon[J]. Applied Surface Science, 255, 5425-5429(2009).

    [98] Zhang D S, Chen F, Fang G P et al. Wetting characteristics on hierarchical structures patterned by a femtosecond laser[J]. Journal of Micromechanics and Microengineering, 20, 075029(2010).

    [99] Chen F, Zhang D S, Yang Q et al. Anisotropic wetting on microstrips surface fabricated by femtosecond laser[J]. Langmuir, 27, 359-365(2011).

    [100] Zhang D S, Chen F, Yang Q et al. Mutual wetting transition between isotropic and anisotropic on directional structures fabricated by femotosecond laser[J]. Soft Matter, 7, 8337-8342(2011).

    [101] Yong J L, Yang Q, Chen F et al. Stable superhydrophobic surface with hierarchical mesh-porous structure fabricated by a femtosecond laser[J]. Applied Physics A, 111, 243-249(2013).

    [102] Wu B, Zhou M, Li J et al. Superhydrophobic surfaces fabricated by microstructuring of stainless steel using a femtosecond laser[J]. Applied Surface Science, 256, 61-66(2009).

    [103] Vorobyev A Y, Guo C L. Multifunctional surfaces produced by femtosecond laser pulses[J]. Journal of Applied Physics, 117, 033103(2015).

    [104] Yong J L, Chen F, Yang Q et al. Femtosecond laser induced hierarchical ZnO superhydrophobic surfaces with switchable wettability[J]. Chemical Communications, 51, 9813-9816(2015).

    [105] Zhou M, Yang H F, Li B J et al. Forming mechanisms and wettability of double-scale structures fabricated by femtosecond laser[J]. Applied Physics A, 94, 571-576(2009).

    [106] Lin Y, Han J P, Cai M Y et al. Durable and robust transparent superhydrophobic glass surfaces fabricated by a femtosecond laser with exceptional water repellency and thermostability[J]. Journal of Materials Chemistry A, 6, 9049-9056(2018).

    [107] Bai X, Yang Q, Fang Y et al. Superhydrophobicity-memory surfaces prepared by a femtosecond laser[J]. Chemical Engineering Journal, 383, 123143(2020).

    [108] Bellanger H, Darmanin T, de Givenchy E T et al. Chemical and physical pathways for the preparation of superoleophobic surfaces and related wetting theories[J]. Chemical Reviews, 114, 2694-2716(2014).

    [109] Xue Z X, Liu M J, Jiang L. Recent developments in polymeric superoleophobic surfaces[J]. Journal of Polymer Science Part B: Polymer Physics, 50, 1209-1224(2012).

    [110] Chu Z L, Seeger S. Superamphiphobic surfaces[J]. Chemical Society Reviews, 43, 2784-2798(2014).

    [111] Liu H, Wang Y D, Huang J Y et al. Bioinspired surfaces with superamphiphobic properties: concepts, synthesis, and applications[J]. Advanced Functional Materials, 28, 1870123(2018).

    [112] Tuteja A, Choi W, Ma M L et al. Designing superoleophobic surfaces[J]. Science, 318, 1618-1622(2007).

    [113] Tuteja A, Choi W, Mabry J M et al. Robust omniphobic surfaces[J]. Proceedings of the National Academy of Sciences of the United States of America, 105, 18200-18205(2008).

    [114] Helbig R, Nickerl J, Neinhuis C et al. Smart skin patterns protect springtails[J]. PLoS One, 6, e25105(2011).

    [115] Dong S L, Zhang X L, Li Q et al. Springtail-inspired superamphiphobic ordered nanohoodoo arrays with quasi-doubly reentrant structures[J]. Small, 16, 200079(2020).

    [116] Yun G T, Jung W B, Oh M S et al. Springtail-inspired superomniphobic surface with extreme pressure resistance[J]. Science Advances, 4, eaat4978(2018).

    [117] Liu X J, Gu H C, Wang M et al. 3D printing of bioinspired liquid superrepellent structures[J]. Advanced Materials, 30, 1800103(2018).

    [118] Yang Y, Zhang Y, Hu Y et al. Femtosecond laser regulated ultrafast growth of mushroom-like architrcture for oil repellency and manipulation[J]. Nano Letters, 21, 9301-9309(2021).

    [119] Han J P, Cai M Y, Lin Y et al. 3D re-entrant nanograss on microcones for durable superamphiphobic surfaces via laser-chemical hybrid method[J]. Applied Surface Science, 456, 726-736(2018).

    [120] Yang J, Zhang Z Z, Xu X H et al. Superhydrophilic-superoleophobic coatings[J]. Journal of Materials Chemistry, 22, 2834-2837(2012).

    [121] Yong J L, Chen F, Yang Q et al. Bioinspired underwater superoleophobic surface with ultralow oil-adhesion achieved by femtosecond laser microfabrication[J]. Journal of Materials Chemistry A, 2, 8790-8795(2014).

    [122] Li G Q, Zhang Z, Wu P C et al. One-step facile fabrication of controllable microcone and micromolar silicon arrays with tunable wettability by liquid-assisted femtosecond laser irradiation[J]. RSC Advances, 6, 37463-37471(2016).

    [123] Yong J L, Chen F, Yang Q et al. Bioinspired transparent underwater superoleophobic and anti-oil surfaces[J]. Journal of Materials Chemistry A, 3, 9379-9384(2015).

    [124] Yong J L, Chen F, Yang Q et al. Femtosecond laser controlling underwater oil-adhesion of glass surface[J]. Applied Physics A, 119, 837-844(2015).

    [125] Huo J L, Yang Q, Chen F et al. Underwater transparent miniature “mechanical hand” based on femtosecond laser-induced controllable oil-adhesive patterned glass for oil droplet manipulation[J]. Langmuir, 33, 3659-3665(2017).

    [126] Zhang J Z, Chen F, Yang Q et al. A widely applicable method to fabricate underwater superoleophobic surfaces with low oil-adhesion on different metals by a femtosecond laser[J]. Applied Physics A, 123, 594(2017).

    [127] Li G Q, Lu Y, Wu P C et al. Fish scale inspired design of underwater superoleophobic microcone arrays by sucrose solution assisted femtosecond laser irradiation for multifunctional liquid manipulation[J]. Journal of Materials Chemistry A, 3, 18675-18683(2015).

    [128] Yu C M, Zhang P P, Wang J M et al. Superwettability of gas bubbles and its application: from bioinspiration to advanced materials[J]. Advanced Materials, 29, 1703053(2017).

    [129] George J E, Chidangil S, George S D. Recent progress in fabricating superaerophobic and superaerophilic surfaces[J]. Advanced Materials Interfaces, 4, 1601088(2017).

    [130] Liu X C, Yang F C, Guo J et al. New insights into unusual droplets: from mediating the wettability to manipulating the locomotion modes[J]. Chemical Communications, 56, 14757-14788(2020).

    [131] Seymour R S, Hetz S K. The diving bell and the spider: the physical gill of Argyroneta aquatica[J]. The Journal of Experimental Biology, 214, 2175-2181(2011).

    [132] van Breugel F, Dickinson M. Superhydrophobic diving flies (Ephydra hians) and the hypersaline waters of Mono Lake[J]. Proceedings of the National Academy of Sciences, 114, 13483-13488(2017).

    [133] Zhang Y, Hu Y, Xu B et al. Robust underwater air layer retention and restoration on salvinia inspired self-grown heterogeneous architectures[J]. ACS Nano, 16, 2730-2740(2022).

    [134] Yong J L, Singh S C, Zhan Z B et al. Reducing adhesion for dispensing tiny water/oil droplets and gas bubbles by femtosecond laser-treated needle nozzles: superhydrophobicity, superoleophobicity, and superaerophobicity[J]. ChemNanoMat, 5, 241-249(2019).

    [135] Yong J L, Singh S, Zhan Z B et al. How to obtain six different superwettabilities on a same microstructured pattern: relationship between various superwettabilities in different solid/liquid/gas systems[J]. Langmuir, 35, 921-927(2019).

    [136] Yong J L, Singh S, Zhan Z B et al. Substrate-independent, fast, and reversible switching between underwater superaerophobicity and aerophilicity on the femtosecond laser-induced superhydrophobic surfaces for selectively repelling or capturing bubbles in water[J]. ACS Applied Materials & Interfaces, 11, 8667-8675(2019).

    [137] Huo J L, Yang Q, Yong J L et al. Underwater superaerophobicity/superaerophilicity and unidirectional bubble passage based on the femtosecond laser-structured stainless steel mesh[J]. Advanced Materials Interfaces, 7, 1902128(2020).

    [138] Bohn H F, Federle W. Insect aquaplaning: Nepenthes pitcher plants capture prey with the peristome, a fully wettable water-lubricated anisotropic surface[J]. Proceedings of the National Academy of Sciences of the United States of America, 101, 14138-14143(2004).

    [139] Chen H W, Zhang P F, Zhang L W et al. Continuous directional water transport on the peristome surface of Nepenthes alata[J]. Nature, 532, 85-89(2016).

    [140] Yong J L, Chen F, Yang Q et al. Nepenthes inspired design of self-repairing omniphobic slippery liquid infused porous surface (SLIPS) by femtosecond laser direct writing[J]. Advanced Materials Interfaces, 4, 1700552(2017).

    [141] Yong J L, Huo J L, Yang Q et al. Femtosecond laser direct writing of porous network microstructures for fabricating super-slippery surfaces with excellent liquid repellence and anti-cell proliferation[J]. Advanced Materials Interfaces, 5, 1701479(2018).

    [142] Cheng Y, Yang Q, Lu Y et al. A femtosecond Bessel laser for preparing a nontoxic slippery liquid-infused porous surface (SLIPS) for improving the hemocompatibility of NiTi alloys[J]. Biomaterials Science, 8, 6505-6514(2020).

    [143] Fang Y, Yong J L, Cheng Y et al. Liquid-infused slippery stainless steel surface prepared by alcohol-assisted femtosecond laser ablation[J]. Advanced Materials Interfaces, 8, 2001334(2021).

    [144] Liang J, Shan C, Wang H et al. Highly stable and transparent slippery surface on silica glass fabricated by femtosecond laser[J]. Advanced Engineering Materials, 24, 2200708(2022).

    [145] Yong J L, Yang Q, Hou X et al. Underwater superpolymphobicity: concept, achievement, and applications[J]. Nano Select, 2, 1011-1022(2021).

    [146] Yong J L, Zhan Z B, Singh S C et al. Femtosecond laser-structured underwater “superpolymphobic” surfaces[J]. Langmuir, 35, 9318-9322(2019).

    [147] Yong J L, Zhan Z B, Singh S C et al. Microfluidic channels fabrication based on underwater superpolymphobic microgrooves produced by femtosecond laser direct writing[J]. ACS Applied Polymer Materials, 1, 2819-2825(2019).

    [148] Zhang J, Yao Y Y, Sheng L et al. Self-fueled biomimetic liquid metal mollusk[J]. Advanced Materials, 27, 2648-2655(2015).

    [149] Kazem N, Hellebrekers T, Majidi C. Soft multifunctional composites and emulsions with liquid metals[J]. Advanced Materials, 29, 1605985(2017).

    [150] Daeneke T, Khoshmanesh K, Mahmood N et al. Liquid metals: fundamentals and applications in chemistry[J]. Chemical Society Reviews, 47, 4073-4111(2018).

    [151] Ilyas N, Cook A, Tabor C E. Designing liquid metal interfaces to enable next generation flexible and reconfigurable electronics[J]. Advanced Materials Interfaces, 4, 1700141(2017).

    [152] Yong J L, Zhang C J, Bai X et al. Designing “supermetalphobic” surfaces that greatly repel liquid metal by femtosecond laser processing: does the surface chemistry or microstructure play a crucial role?[J]. Advanced Materials Interfaces, 7, 1901931(2020).

    [153] Joshipura I D, Ayers H R, Castillo G A et al. Patterning and reversible actuation of liquid gallium alloys by preventing adhesion on rough surfaces[J]. ACS Applied Materials & Interfaces, 10, 44686-44695(2018).

    [154] Youngblood J P, McCarthy T J. Ultrahydrophobic polymer surfaces prepared by simultaneous ablation of polypropylene and sputtering of poly (tetrafluoroethylene) using radio frequency plasma[J]. Macromolecules, 32, 6800-6806(1999).

    [155] Cheng Z J, Wang J W, Lai H et al. pH-controllable on-demand oil/water separation on the switchable superhydrophobic/superhydrophilic and underwater low-adhesive superoleophobic copper mesh film[J]. Langmuir, 31, 1393-1399(2015).

    [156] Zhang J Z, Zhang K Y, Yong J L et al. Femtosecond laser preparing patternable liquid-metal-repellent surface for flexible electronics[J]. Journal of Colloid and Interface Science, 578, 146-154(2020).

    [157] Zhang J Z, Yong J L, Zhang C J et al. Liquid metal-based reconfigurable and repairable electronics designed by a femtosecond laser[J]. ACS Applied Electronic Materials, 2, 2685-2691(2020).

    [158] Feng L, Zhang Y N, Xi J M et al. Petal effect: a superhydrophobic state with high adhesive force[J]. Langmuir, 24, 4114-4119(2008).

    [159] Zhang D S, Chen F, Yang Q et al. A simple way to achieve pattern-dependent tunable adhesion in superhydrophobic surfaces by a femtosecond laser[J]. ACS Applied Materials & Interfaces, 4, 4905-4912(2012).

    [160] Long J Y, Fan P X, Gong D W et al. Superhydrophobic surfaces fabricated by femtosecond laser with tunable water adhesion: from lotus leaf to rose petal[J]. ACS Applied Materials & Interfaces, 7, 9858-9865(2015).

    [161] Wu D, Wang J N, Wu S Z et al. Three-level biomimetic rice-leaf surfaces with controllable anisotropic sliding[J]. Advanced Functional Materials, 21, 2927-2932(2011).

    [162] Long J Y, Fan P X, Jiang D F et al. Anisotropic sliding of water droplets on the superhydrophobic surfaces with anisotropic groove-like micro/nano structures[J]. Advanced Materials Interfaces, 3, 1600641(2016).

    [163] Yong J L, Chen F, Yang Q et al. Controllable underwater anisotropic oil-wetting[J]. Applied Physics Letters, 105, 071608(2014).

    [164] Cheng Y, Yang Q, Fang Y et al. Underwater anisotropic 3D superoleophobic tracks applied for the directional movement of oil droplets and the microdroplets reaction[J]. Advanced Materials Interfaces, 6, 1900067(2019).

    [165] Zheng Y M, Gao X F, Jiang L. Directional adhesion of superhydrophobic butterfly wings[J]. Soft Matter, 3, 178-182(2007).

    [166] Cai Y, Lin L, Xue Z X et al. Filefish-inspired surface design for anisotropic underwater oleophobicity[J]. Advanced Functional Materials, 24, 809-816(2014).

    [167] Yong J L, Yang Q, Chen F et al. Bioinspired superhydrophobic surfaces with directional adhesion[J]. RSC Advances, 4, 8138-8143(2014).

    [168] Fang Y, Yong J L, Chen F et al. Bioinspired fabrication of bi/tridirectionally anisotropic sliding superhydrophobic PDMS surfaces by femtosecond laser[J]. Advanced Materials Interfaces, 5, 1701245(2018).

    [169] Wu D, Zhang Z, Zhang Y Y et al. High-performance unidirectional manipulation of microdroplets by horizontal vibration on femtosecond laser-induced slant microwall arrays[J]. Advanced Materials, 32, 2005039(2020).

    [170] Jiao Y L, Li C Z, Wu S Z et al. Switchable underwater bubble wettability on laser-induced titanium multiscale micro-/ nanostructures by vertically crossed scanning[J]. ACS Applied Materials & Interfaces, 10, 16867-16873(2018).

    [171] Zhang J Z, Yong J L, Yang Q et al. Femtosecond laser-induced underwater superoleophobic surfaces with reversible pH-responsive wettability[J]. Langmuir, 35, 3295-3301(2019).

    [172] Jiang S J, Hu Y L, Wu H et al. Multifunctional Janus microplates arrays actuated by magnetic fields for water/light switches and bio-inspired assimilatory coloration[J]. Advanced Materials, 31, 1807507(2019).

    [173] Jiang S J, Hu Y L, Wu H et al. Three-dimensional multifunctional magnetically responsive liquid manipulator fabricated by femtosecond laser writing and soft transfer[J]. Nano Letters, 20, 7519-7529(2020).

    [174] Shao K X, Jiang S J, Hu Y L et al. Bioinspired lubricated slippery magnetic responsive microplate array for high performance multi-substance transport[J]. Advanced Functional Materials, 32, 2205831(2022).

    [175] Jiao Y L, Li C Z, Lü X D et al. In situ tunable bubble wettability with fast response induced by solution surface tension[J]. Journal of Materials Chemistry A, 6, 20878-20886(2018).

    [176] Huo J L, Yong J L, Chen F et al. Trapped air-induced reversible transition between underwater superaerophilicity and superaerophobicity on the femtosecond laser-ablated superhydrophobic PTFE surfaces[J]. Advanced Materials Interfaces, 6, 1900262(2019).

    [177] Yong J L, Yang Q, Hou X et al. Emerging separation applications of surface superwettability[J]. Nanomaterials, 12, 688(2022).

    [178] Li M J, Yang Q, Chen F et al. Integration of great water repellence and imaging performance on a superhydrophobic PDMS microlens array by femtosecond laser microfabrication[J]. Advanced Engineering Materials, 21, 1800994(2019).

    [179] Li M J, Yang Q, Yong J L et al. Underwater superoleophobic and anti-oil microlens array prepared by combing femtosecond laser wet etching and direct writing techniques[J]. Optics Express, 27, 35903-35913(2019).

    [180] Bai X, Yong J L, Shan C et al. Remote, selective, and in situ manipulation of liquid droplets on a femtosecond laser-structured superhydrophobic shape-memory polymer by near-infrared light[J]. Science China Chemistry, 64, 861-872(2021).

    [181] Yong J L, Yang Q, Chen F et al. Using “underwater superoleophobic pattern” to make a liquid lens array[J]. RSC Advances, 5, 40907-40911(2015).

    [182] Zhou C, Li G Q, Li C Z et al. Three-level cobblestone-like TiO2 micro/nanocones for dual-responsive water/oil reversible wetting without fluorination[J]. Applied Physics Letters, 111, 141607(2017).

    [183] Yong J L, Yang Q, Huo J L et al. Superwettability-based separation: from oil/water separation to polymer/water separation and bubble/water separation[J]. Nano Select, 2, 1580-1588(2021).

    [184] Li G Q, Fan H, Ren F F et al. Multifunctional ultrathin aluminum foil: oil/water separation and particle filtration[J]. Journal of Materials Chemistry A, 4, 18832-18840(2016).

    [185] Yin K, Chu D K, Dong X R et al. Femtosecond laser induced robust periodic nanoripple structured mesh for highly efficient oil-water separation[J]. Nanoscale, 9, 14229-14235(2017).

    [186] Yong J L, Bai X, Yang Q et al. Filtration and removal of liquid polymers from water (polymer/water separation) by use of the underwater superpolymphobic mesh produced with a femtosecond laser[J]. Journal of Colloid and Interface Science, 582, 1203-1212(2021).

    [187] Yong J L, Chen F, Huo J L et al. Femtosecond laser induced underwater superaerophilic and superaerophobic PDMS sheets with through microholes for selective passage of air bubbles and further collection of underwater gas[J]. Nanoscale, 10, 3688-3696(2018).

    [188] Zhu S W, Li J W, Cai S W et al. Unidirectional transport and effective collection of underwater CO2 bubbles utilizing ultrafast-laser-ablated Janus foam[J]. ACS Applied Materials & Interfaces, 12, 18110-18115(2020).

    [189] Yong J L, Zhuang J, Bai X et al. Water/gas separation based on the selective bubble-passage effect of underwater superaerophobic and superaerophilic meshes processed by a femtosecond laser[J]. Nanoscale, 13, 10414-10424(2021).

    [190] Yao Y S, Meng Q S, Peng Y B et al. Highly efficient removal of bubbles from water pipes by femtosecond laser-designed superhydrophobic porous microstructures[J]. Applied Physics Letters, 123, 211601(2023).

    [191] Pan R, Zhang H J, Zhong M L. Triple-scale superhydrophobic surface with excellent anti-icing and icephobic performance via ultrafast laser hybrid fabrication[J]. ACS Applied Materials & Interfaces, 13, 1743-1753(2021).

    [192] Zhang J L, Yang Q, Cheng Y et al. Slippery liquid-infused porous surface on metal material with excellent ice resistance fabricated by femtosecond Bessel laser[J]. Advanced Engineering Materials, 24, 2101738(2022).

    [193] Zhao Z X, Luo G Y, Cheng M P et al. Water-repellent coatings on corrosion resistance by femtosecond laser processing[J]. Coatings, 12, 1736(2022).

    [194] Trdan U, Sano T, Klobčar D et al. Improvement of corrosion resistance of AA2024-T3 using femtosecond laser peening without protective and confining medium[J]. Corrosion Science, 143, 46-55(2018).

    [195] Cheng Y, Yang Z W, Gou X D et al. Heart valve-inspired self-lubricating anticoagulant surfaces[J]. Chemical Engineering Journal, 474, 145358(2023).

    [196] Sarbada S, Shin Y C. Superhydrophobic contoured surfaces created on metal and polymer using a femtosecond laser[J]. Applied Surface Science, 405, 465-475(2017).

    [197] Rong W T, Zhang H F, Zhang T J et al. Drag reduction using lubricant-impregnated anisotropic slippery surfaces inspired by bionic fish scale surfaces containing micro-/ nanostructured arrays[J]. Advanced Engineering Materials, 23, 2000821(2021).

    [198] Ren F F, Li G Q, Zhang Z et al. A single-layer Janus membrane with dual gradient conical micropore arrays for self-driving fog collection[J]. Journal of Materials Chemistry A, 5, 18403-18408(2017).

    [199] Yin K, Du H F, Dong X R et al. A simple way to achieve bioinspired hybrid wettability surface with micro/nanopatterns for efficient fog collection[J]. Nanoscale, 9, 14620-14626(2017).

    [200] Liu W J, Fan P X, Cai M Y et al. An integrative bioinspired venation network with ultra-contrasting wettability for large-scale strongly self-driven and efficient water collection[J]. Nanoscale, 11, 8940-8949(2019).

    [201] Zhang J Z, Zhang Y C, Yong J L et al. Femtosecond laser direct weaving bioinspired superhydrophobic/hydrophilic micro-pattern for fog harvesting[J]. Optics & Laser Technology, 146, 107593(2022).

    [202] Zhang C J, Yang Q, Yong J L et al. Guiding magnetic liquid metal for flexible circuit[J]. International Journal of Extreme Manufacturing, 3, 025102(2021).

    [203] Wu H, Zhang L R, Jiang S J et al. Ultrathin and high-stress-resolution liquid-metal-based pressure sensors with simple device structures[J]. ACS Applied Materials & Interfaces, 12, 55390-55398(2020).

    [204] Zhang C J, Li Z K, Li H Y et al. Femtosecond laser-induced supermetalphobicity for design and fabrication of flexible tactile electronic skin sensor[J]. ACS Applied Materials & Interfaces, 14, 38328-38338(2022).

    [205] Ranella A, Barberoglou M, Bakogianni S et al. Tuning cell adhesion by controlling the roughness and wettability of 3D micro/nano silicon structures[J]. Acta Biomaterialia, 6, 2711-2720(2010).

    [206] Singh S C, ElKabbash M, Li Z L et al. Solar-trackable super-wicking black metal panel for photothermal water sanitation[J]. Nature Sustainability, 3, 938-946(2020).

    [207] Diebold E D, Mack N H, Doorn S K et al. Femtosecond laser-nanostructured substrates for surface-enhanced Raman scattering[J]. Langmuir, 25, 1790-1794(2009).

    [208] Yu J, Wu J G, Yang H et al. Extremely sensitive SERS sensors based on a femtosecond laser-fabricated superhydrophobic /-philic microporous platform[J]. ACS Applied Materials & Interfaces, 14, 43877-43885(2022).

    [209] Hu Y, Yong J, Hu Y et al. Efficient concentration of trace analyte with ordered hotspots construction for robust and sensitive SERS platform[J]. International Journal of Extreme Manufacturing, 6, 111026(2024).

    Jiale Yong, Dong Wu. Bioinspired Controlling the Surface Wettability of Materials by Femtosecond Laser: Current Progress and Challenges (Invited)[J]. Chinese Journal of Lasers, 2024, 51(1): 0102002
    Download Citation