• Acta Optica Sinica
  • Vol. 40, Issue 2, 0214001 (2020)
Yulong Cui, Wei Huang, Zhiyue Zhou, Zhixian Li, and Zefeng Wang*
Author Affiliations
  • State Key Laboratory of Pulsed Power Laser Technology, Hunan Provincial Key Laboratory of High Energy Laser Technology, College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha, Hunan 410073, China
  • show less
    DOI: 10.3788/AOS202040.0214001 Cite this Article Set citation alerts
    Yulong Cui, Wei Huang, Zhiyue Zhou, Zhixian Li, Zefeng Wang. Single-Pass High-Efficiency Rotational Raman Laser Source Based on Deuterium-Filled Hollow-Core Photonic Crystal Fiber[J]. Acta Optica Sinica, 2020, 40(2): 0214001 Copy Citation Text show less
    References

    [1] Minck R W, Terhune R W, Rado W G. Laser-stimulated Raman effect and resonant four-photon interactions in gases H2, D2, and CH4[J]. Applied Physics Letters, 3, 181-184(1963).

    [2] Cregan R F, Mangan B J, Knight J C et al. Single-mode photonic band gap guidance of light in air[J]. Science, 285, 1537-1539(1999).

    [3] Couny F, Benabid F, Light P S. Large-pitch kagome-structured hollow-core photonic crystal fiber[J]. Optics Letters, 31, 3574-3576(2006).

    [4] Pryamikov A D, Biriukov A S, Kosolapov A F et al. Demonstration of a waveguide regime for a silica hollow-core microstructured optical fiber with a negative curvature of the core boundary in the spectral region >3.5 μm[J]. Optics Express, 19, 1441-1448(2011).

    [5] Yu F, Wadsworth W J, Knight J C. Low loss silica hollow core fibers for 3-4 μm spectral region[J]. Optics Express, 20, 11153-11158(2012).

    [6] Yu F, Knight J C. Negative curvature hollow-core optical fiber[J]. IEEE Journal of Selected Topics in Quantum Electronics, 22, 146-155(2016).

    [7] Gao S F, Wang Y Y, Ding W et al. Hollow-core conjoined-tube negative-curvature fibre with ultralow loss[J]. Nature Communications, 9, 2828(2018).

    [8] Habib M S. Antonio-Lopez J E, Markos C, et al. Single-mode, low loss hollow-core anti-resonant fiber designs[J]. Optics Express, 27, 3824-3836(2019).

    [9] Benabid F, Knight J C, Antonopoulos G et al. Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber[J]. Science, 298, 399-402(2002).

    [10] Benabid F, Bouwmans G, Knight J C et al. Ultrahigh efficiency laser wavelength conversion in a gas-filled hollow core photonic crystal fiber by pure stimulated rotational Raman scattering in molecular hydrogen[J]. Physical Review Letters, 93, 123903(2004).

    [11] Couny F, Benabid F, Light P S. Subwatt threshold CW Raman fiber-gas laser based on H2-filled hollow-core photonic crystal fiber[J]. Physical Review Letters, 99, 143903(2007).

    [12] Wang Z F, Yu F, Wadsworth W J et al. Efficient 1.9 μm emission in H2-filled hollow core fiber by pure stimulated vibrational Raman scattering[J]. Laser Physics Letters, 11, 105807(2014).

    [13] Gladyshev A V, Kolyadin A N, Kosolapov A F et al. Efficient 1.9-μm Raman generation in a hydrogen-filled hollow-core fibre[J]. Quantum Electronics, 45, 807-812(2015).

    [14] Chen Y, Wang Z, Gu B et al. Achieving a 1.5 μm fiber gas Raman laser source with about 400 kW of peak power and a 6.3 GHz linewidth[J]. Optics Letters, 41, 5118-5121(2016).

    [15] Chen Y B, Gu B, Wang Z F et al. 1.5 μm fiber gas Raman laser source[J]. Acta Optica Sinica, 36, 0506002(2016).

    [16] Wang Z F, Gu B, Chen Y B et al. Demonstration of a 150-kW-peak-power, 2-GHz-linewidth, 1.9-μm fiber gas Raman source[J]. Applied Optics, 56, 7657-7661(2017).

    [17] Gladyshev A V, Kosolapov A F, Khudyakov M M et al. 2.9, 3.3, and 3.5 μm Raman lasers based on revolver hollow-core silica fiber filled by 1H2/D2 gas mixture[J]. IEEE Journal of Selected Topics in Quantum Electronics, 24, 0903008(2018).

    [18] Cao L, Gao S F, Peng Z G et al. High peak power 2.8 μm Raman laser in a methane-filled negative-curvature fiber[J]. Optics Express, 26, 5609-5615(2018).

    [19] Li Z X, Huang W, Cui Y L et al. Efficient mid-infrared cascade Raman source in methane-filled hollow-core fibers operating at 2.8 μm[J]. Optics Letters, 43, 4671-4674(2018).

    [20] Astapovich M S, Gladyshev A V, Khudyakov M M et al. Watt-level nanosecond 4.42-μm Raman laser based on silica fiber[J]. IEEE Photonics Technology Letters, 31, 78-81(2019).

    [21] Nampoothiri A V V, Jones A M, Fourcade-Dutin C et al. Hollow-core optical fiber gas lasers (HOFGLAS): a review [invited][J]. Optical Materials Express, 2, 948-961(2012).

    [22] Zhang Y, Zhang P, Liu P et al. Fiber light source at 1.7 μm waveband and its applications[J]. Laser & Optoelectronics Progress, 53, 090002(2016).

    [23] Daniel J M O, Simakov N, Tokurakawa M et al. Ultra-short wavelength operation of a thulium fibre laser in the 1660-1750 nm wavelength band[J]. Optics Express, 23, 18269-18276(2015).

    [24] Firstov S V, Alyshev S V, Riumkin K E et al. Watt-level, continuous-wave bismuth-doped all-fiber laser operating at 1.7 μm[J]. Optics Letters, 40, 4360-4363(2015).

    [25] Zhang P, Wu D, Du Q L et al. 1.7 μm band narrow-linewidth tunable Raman fiber lasers pumped by spectrum-sliced amplified spontaneous emission[J]. Applied Optics, 56, 9742-9748(2017).

    [26] Li X Q, Gao S F, Wang Y Y et al. Fusion splice technique of hollow-core photonic crystal fiber[J]. Navigation Positioning and Timing, 4, 102-106(2017).

    [27] Chen Y B. Research on 1.5 μm hollow-core fiber gas Raman laser[D]. Changsha: National University of Defense Technology(2017).

    [28] Terry N B, Alley T G, Russell T H. An explanation of SRS beam cleanup in graded-index fibers and the absence of SRS beam cleanup in step-index fibers[J]. Optics Express, 15, 17509-17519(2007).

    Yulong Cui, Wei Huang, Zhiyue Zhou, Zhixian Li, Zefeng Wang. Single-Pass High-Efficiency Rotational Raman Laser Source Based on Deuterium-Filled Hollow-Core Photonic Crystal Fiber[J]. Acta Optica Sinica, 2020, 40(2): 0214001
    Download Citation