• Chinese Journal of Lasers
  • Vol. 45, Issue 2, 207013 (2018)
Zhao Yiming1, Liu Chengcheng2, Wang Jing3, and Hu Min1、*
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • show less
    DOI: 10.3788/CJL201845.0207013 Cite this Article Set citation alerts
    Zhao Yiming, Liu Chengcheng, Wang Jing, Hu Min. Research Progress on Photodynamic Antimicrobial Chemotherapy Based on Rare Earth Upconversion Nanoplatform[J]. Chinese Journal of Lasers, 2018, 45(2): 207013 Copy Citation Text show less
    References

    [1] Anderson D J, Jenkins T C, Evans S R et al. The role of stewardship in addressing antibacterial resistance: Stewardship and infection control committee of the antibacterial resistance leadership group[J]. Clinical Infectious Diseases: An Official Publication of the Infectious Diseases Society of America, 64, S36-S40(2017). http://europepmc.org/abstract/MED/28350902

    [2] Doernberg S B, Lodise T P, Thaden J T et al. Gram-positive bacterial infections: Research priorities, accomplishments, and future directions of the antibacterial resistance leadership group[J]. Clinical Infectious Diseases : An Official Publication of the Infectious Diseases Society of America, 64, S24-S29(2017). http://europepmc.org/abstract/MED/28350900

    [3] Kaye K S, Pogue J M. Infections caused by resistant gram-negative bacteria: Epidemiology and management[J]. Pharmacotherapy, 35, 949-962(2015). http://europepmc.org/abstract/MED/26497481

    [4] Maisch T. Resistance in antimicrobial photodynamic inactivation of bacteria[J]. Photochemical & Photobiological Sciences : Official Journal of the European Photochemistry Association and the European Society for Photobiology, 14, 1518-1526(2015). http://europepmc.org/abstract/MED/26098395

    [5] Baltazar L M, Ray A, Santos D A et al. Antimicrobial photodynamic therapy: An effective alternative approach to control fungal infections[J]. Frontiers in Microbiology, 6, 202-202(2015). http://pubmedcentralcanada.ca/pmcc/articles/PMC4358220/

    [6] Zazo H, Colino C I, Lanao J M. Current applications of nanoparticles in infectious diseases[J]. Journal of Controlled Release : Official Journal of the Controlled Release Society, 224, 86-102(2016). http://www.sciencedirect.com/science/article/pii/S0168365916300074

    [7] Pan Y, Zhang L, Zeng L et al. Gd-based upconversion nanocarriers with yolk-shell structure for dual-modal imaging and enhanced chemotherapy to overcome multidrug resistance in breast cancer[J]. Nanoscale, 8, 878-888(2016). http://europepmc.org/abstract/MED/26648267

    [8] Ma D, Xu X, Hu M et al. Rare-earth-based nanoparticles with simultaneously enhanced near-infrared (NIR)-visible (Vis) and NIR-NIR dual-conversion luminescence for multimodal imaging[J]. Chemistry, An Asian Journal, 11, 1050-1058(2016). http://onlinelibrary.wiley.com/doi/10.1002/asia.201501456/pdf

    [9] Wang Y, Yang G, Wang Y et al. Multiple imaging and excellent anticancer efficiency of an upconverting nanocarrier mediated by single near infrared light[J]. Nanoscale, 9, 4759-4769(2017). http://www.ncbi.nlm.nih.gov/pubmed/28332669/

    [10] van Oosten M, Hahn M, Crane L M et al. . Targeted imaging of bacterial infections: Advances, hurdles and hopes[J]. FEMS Microbiology Reviews, 39, 892-916(2015). http://femsre.oxfordjournals.org/content/39/6/892

    [11] Jin B, Wang S, Lin M et al. Upconversion nanoparticles based FRET aptasensor for rapid and ultrasenstive bacteria detection[J]. Biosensors & Bioelectronics, 90, 525-533(2017). http://europepmc.org/abstract/med/27825886

    [12] Wei Y, Lu F, Zhang X et al. Synthesis and characterization of efficient near-infrared upconversion Yb and Tm codoped NaYF4 nanocrystal reporter[J]. Journal of Alloys and Compounds, 427, 333-340(2007). http://onlinelibrary.wiley.com/doi/10.1002/chin.200714010/full

    [13] Mialon G, Türkcan S, Dantelle G et al. High up-conversion efficiency of YVO4∶Yb, Er nanoparticles in water down to the single-particle level[J]. The Journal of Physical Chemistry C, 114, 22449-22454(2010). http://pubs.acs.org/doi/abs/10.1021/jp107900z

    [14] Liu C, Wang H, Li X et al. Monodisperse, size-tunable and highly efficient β-NaYF4∶Yb, Er(Tm) up-conversion luminescent nanospheres: Controllable synthesis and their surface modifications[J]. Journal of Materials Chemistry, 19, 3546-3553(2009). http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=VIRT01000019000022000154000001&idtype=cvips&gifs=Yes

    [15] Zhang F, Wan Y, Yu T et al. Uniform nanostructured arrays of sodium rare-earth fluorides for highly efficient multicolor upconversion luminescence[J]. Angewandte Chemie, 119, 8122-8125(2007). http://europepmc.org/abstract/MED/17849413

    [16] Yuan P, Lee Y H, Gnanasammandhan M K et al. Plasmon enhanced upconversion luminescence of NaYF4∶Yb, Er@SiO2@Ag core-shell nanocomposites for cell imaging[J]. Nanoscale, 4, 5132-5137(2012). http://europepmc.org/abstract/med/22790174

    [17] Muhr V, Wilhelm S, Hirsch T et al. Upconversion nanoparticles: From hydrophobic to hydrophilic surfaces[J]. Accounts of Chemical Research, 47, 3481-3493(2014). http://www.ncbi.nlm.nih.gov/pubmed/25347798

    [18] Li X, Zhang F, Zhao D. Lab on upconversion nanoparticles: Optical properties and applications engineering via designed nanostructure[J]. Chemical Society Reviews, 44, 1346-1378(2015). http://onlinelibrary.wiley.com/doi/10.1002/chin.201521241/pdf

    [19] Yang T, Sun Y, Liu Q et al. Cubic sub-20 nm NaLuF4-based upconversion nanophosphors for high-contrast bioimaging in different animal species[J]. Biomaterials, 33, 3733-3742(2012). http://europepmc.org/abstract/MED/22361097

    [20] Bardhan R, Chen W, Perez-Torres C et al. Nanoshells with targeted simultaneous enhancement of magnetic and optical imaging and photothermal therapeutic response[J]. Advanced Functional Materials, 19, 3901-3909(2009). http://onlinelibrary.wiley.com/doi/10.1002/adfm.200901235/full

    [21] He L, Feng L, Cheng L et al. Multilayer dual-polymer-coated upconversion nanoparticles for multimodal imaging and serum-enhanced gene delivery[J]. ACS Applied Materials & Interfaces, 5, 10381-10388(2013). http://www.ncbi.nlm.nih.gov/pubmed/24070392

    [22] Wang L, Yan R, Huo Z et al. Fluorescence resonant energy transfer biosensor based on upconversion-luminescent nanoparticles[J]. Angewandte Chemie, 44, 6054-6057(2005). http://onlinelibrary.wiley.com/doi/10.1002/anie.200501907/pdf

    [23] Wang M, Mi C C, Wang W X et al. Immunolabeling and NIR-excited fluorescent imaging of hela cells by using NaYF4∶Yb, Er upconversion nanoparticles[J]. ACS Nano, 3, 1580-1586(2009). http://europepmc.org/abstract/med/19476317

    [24] Liu F, Zhao Q, You H et al. Synthesis of stable carboxy-terminated NaYF4∶Yb 3+, Er 3+@SiO2 nanoparticles with ultrathin shell for biolabeling applications [J]. Nanoscale, 5, 1047-1053(2013). http://www.ncbi.nlm.nih.gov/pubmed/23254181/

    [25] Qian W, Wei W, Hong M et al. Microwave assisted synthesis of ZnPc-COOH and SiO2/ZnPc-COOH nanopaticles: Singlet oxygen production and photocatalytic property[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 443, 52-59(2014). http://www.sciencedirect.com/science/article/pii/S0927775713008248

    [26] Liu J N, Bu W B, Shi J L. Silica coated upconversion nanoparticles: A versatile platform for the development of efficient theranostics[J]. Accounts of Chemical Research, 48, 1797-1805(2015). http://www.ncbi.nlm.nih.gov/pubmed/26057000

    [27] Yin M, Li Z, Zhou L et al. A multifunctional upconverting nanoparticle incorporated polycationic hydrogel for near-infrared triggered and synergistic treatment of drug-resistant bacteria[J]. Nanotechnology, 27, 125601(2016). http://www.ncbi.nlm.nih.gov/pubmed/26883410

    [28] Shen T, Zhang Y, Kirillov A M et al. Versatile rare-earth oxide nanocomposites: Enhanced chemo/photothermal/photodynamic anticancer therapy and multimodal imaging[J]. Journal of Materials Chemistry B, 4, 7832-7844(2016). http://www.researchgate.net/publication/309519915_Versatile_Rare-Earth_Oxide_Nanocomposites_Enhanced_ChemoPhotothermalPhotodynamic_Anticancer_Therapy_and_Multimodal_Imaging

    [29] Xiao Q, Ji Y, Xiao Z et al. Novel multifunctional NaYF4∶Er 3+, Yb 3+/PEGDA hybrid microspheres: NIR-light-activated photopolymerization and drug delivery [J]. Chemical Communications, 49, 1527-1529(2013). http://www.ncbi.nlm.nih.gov/pubmed/23321569

    [30] Yang M, Xing L Y, Gao W D et al. Dose-effect relationship of ZnPc-pdt on tumor cells in vitro[J]. Chinese Journal of Lasers, 44, 0307001(2017).

    [31] Tree-Udom T, Thamyongkit P, Wiratkasem N et al. Harmonization of upconverting nanocrystals and photosensitizer for antimicrobial application[J]. RSC Advances, 5, 102416-102423(2015). http://www.researchgate.net/publication/284223789_Harmonization_of_upconverting_nanocrystals_and_photosensitizer_for_antimicrobial_application

    [32] Yin M, Li Z, Ju E et al. Multifunctional upconverting nanoparticles for near-infrared triggered and synergistic antibacterial resistance therapy[J]. Chemical Communications, 50, 10488-10490(2014). http://europepmc.org/abstract/MED/25068798

    [33] Cavalieri F, Tortora M, Stringaro A et al. Nanomedicines for antimicrobial interventions[J]. The Journal of Hospital Infection, 88, 183-190(2014). http://europepmc.org/abstract/med/25447199

    [34] Dwyer D J, Belenky P A, Yang J H et al. Antibiotics induce redox-related physiological alterations as part of their lethality[J]. Proceedings of the National Academy of Sciences, 111, E2100-E2109(2014). http://www.ncbi.nlm.nih.gov/pubmed/24803433

    [35] Zhao Z J, Xu Z H, Hao Y M et al. Photodynamic therapy combined with antibiotics for treatment of massive traumatic infection in rats[J]. Laser & Optoelectronics Progress, 54, 031701(2017).

    [36] Sun K, Yang H, Huang X et al. ALA-PDT combined with antibiotics for the treatment of atypical mycobacterial skin infections: Outcomes and safety[J]. Photodiagnosis and Photodynamic Therapy, 19, 274-277(2017). http://www.ncbi.nlm.nih.gov/pubmed/28666973

    [37] Perez-Laguna V, Perez-Artiaga L, Lampaya-Perez V et al. Bactericidal effect of photodynamic therapy, alone or in combination with mupirocin or linezolid, on staphylococcus aureus[J]. Frontiers in Microbiology, 8, 1002(2017). http://www.ncbi.nlm.nih.gov/pubmed/28626456

    [38] Maharjan B, Joshi M K, Tiwari A P et al. In-situ synthesis of AgNPs in the natural/synthetic hybrid nanofibrous scaffolds: Fabrication, characterization and antimicrobial activities[J]. Journal of the Mechanical Behavior Of Biomedical Materials, 65, 66-76(2017). http://www.sciencedirect.com/science/article/pii/S1751616116302508

    [39] Deng H. McShan D, Zhang Y, et al. Mechanistic study of the synergistic antibacterial activity of combined silver nanoparticles and common antibiotics[J]. Environmental Science & Technology, 50, 8840-8848(2016). http://www.ncbi.nlm.nih.gov/pubmed/27390928

    [40] Huang F, Gao Y, Zhang Y et al. Silver-decorated polymeric micelles combined with curcumin for enhanced antibacterial activity[J]. ACS Applied Materials & Interfaces, 9, 16880-16889(2017). http://europepmc.org/abstract/MED/28481077

    [41] Tang Q, Liu J, Shrestha L K et al. Antibacterial effect of silver-incorporated flake-shell nanoparticles under dual-modality[J]. ACS Applied Materials & Interfaces, 8, 18922-18929(2016). http://europepmc.org/abstract/MED/27387017

    [42] Suganya P, Vaseeharan B, Vijayakumar S et al. Biopolymer zein-coated gold nanoparticles: Synthesis, antibacterial potential, toxicity and histopathological effects against the Zika virus vector aedes aegypti[J]. Journal of Photochemistry And Photobiology B: Biology, 173, 404-411(2017). http://www.sciencedirect.com/science/article/pii/S1011134417301094

    [43] Vaidya M Y. McBain A J, Butler J A, et al. Antimicrobial efficacy and synergy of metal ions against enterococcus faecium, klebsiella pneumoniae and acinetobacter baumannii in planktonic and biofilm phenotypes[J]. Scientific Reports, 7, 5911(2017). http://pubmedcentralcanada.ca/pmcc/articles/PMC5517536/

    [44] Wang D, Liu B, Quan Z et al. New advances on the marrying of UCNPs and photothermal agents for imaging-guided diagnosis and the therapy of tumors[J]. Journal of Materials Chemistry B, 5, 2209-2230(2017). http://pubs.rsc.org/en/content/articlepdf/2017/tb/c6tb03117j

    [45] Lu M, Kang N, Chen C et al. Plasmonic enhancement of cyanine dyes for near infrared light triggered photodynamic/photothermal therapy and fluorescent imaging[J]. Nanotechnology, 28, 445710(2017). http://europepmc.org/abstract/MED/28741598

    [46] Cao Y, Dong H, Yang Z et al. Aptamer-conjugated graphene quantum dots/porphyrin derivative theranostic agent for intracellular cancer-related microRNA detection and fluorescence-guided photothermal/photodynamic synergetic therapy[J]. ACS Applied Materials & Interfaces, 9, 159-166(2017). http://pubs.acs.org/doi/abs/10.1021/acsami.6b13150

    [47] Li W, Guo X, Kong F et al. Overcoming photodynamic resistance and tumor targeting dual-therapy mediated by indocyanine green conjugated gold nanospheres[J]. Journal of Controlled Release: Official Journal Of The Controlled Release Society, 258, 171-181(2017). http://europepmc.org/abstract/MED/28522192

    [48] Tian B, Wang C, Zhang S et al. Photothermally enhanced photodynamic therapy delivered by nano-graphene oxide[J]. ACS Nano, 5, 7000-7009(2011). http://www.ncbi.nlm.nih.gov/pubmed/21815655

    [49] Huang X, Chen G, Pan J et al. Effective PDT/PTT dual-modal phototherapeutic killing of pathogenic bacteria by using ruthenium nanoparticles[J]. Journal of Materials Chemistry B, 4, 6258-6270(2016). http://pubs.rsc.org/en/content/articlepdf/2016/tb/c6tb01122e

    [50] Chen Q, Wang C, Cheng L et al. Protein modified upconversion nanoparticles for imaging-guided combined photothermal and photodynamic therapy[J]. Biomaterials, 35, 2915-2923(2014). http://www.ncbi.nlm.nih.gov/pubmed/24412081

    [51] He L, Dragavon J, Cho S et al. Self-assembled gold nanostar-NaYF4∶Yb/Er clusters for multimodal imaging, photothermal and photodynamic therapy[J]. Journal of Materials Chemistry B, 4, 4455-4461(2016). http://www.researchgate.net/publication/303853898_Self-Assembled_Gold_Nanostar-NaYF4YbEr_Clusters_for_Multimodal_Imaging_Photothermal_and_Photodynamic_Therapy

    [52] Liu B, Li C, Xing B et al. Multifunctional UCNPs@PDA-ICG nanocomposites for upconversion imaging and combined photothermal/photodynamic therapy with enhanced antitumor efficacy[J]. Journal of Materials Chemistry B, 4, 4884-4894(2016). http://www.researchgate.net/publication/304337795_Multifunctional_UCNPsPDA-ICG_Nanocomposites_for_Upconversion_Imaging_and_Combined_PhotothermalPhotodynamic_Therapy_with_Enhanced_Antitumor_Efficacy

    [53] Fu Y, Liu H, Ren Z et al. Luminescent CaTiO3∶Yb, Er nanofibers co-conjugated with rose bengal and gold nanorods for potential synergistic photodynamic/photothermal therapy[J]. Journal of Materials Chemistry B, 5, 5128-5136(2017). http://pubs.rsc.org/en/content/articlepdf/2017/tb/c7tb01165b

    [54] Umemura S I, Yumita N, Nishigaki R et al. Sonochemical activation of hematoporphyrin: A potential modalityfor cancer treatment. [C]//Proceedings of Ultrasonics Symposium, 2, 955-960(1989).

    [55] Rengeng L, Qianyu Z, Yuehong L et al. Sonodynamic therapy, a treatment developing from photodynamic therapy[J]. Photodiagnosis and Photodynamic Therapy, 19, 159-166(2017). http://www.ncbi.nlm.nih.gov/pubmed/28606724

    [56] Serpe L, Giuntini F. Sonodynamic antimicrobial chemotherapy: First steps towards a sound approach for microbe inactivation[J]. Journal of Photochemistry & Photobiology B: Biology, 150, 44-49(2015). http://europepmc.org/abstract/med/26037696

    [57] Yan S, Lu M, Ding X et al. Hematoporphyrin monomethyl ether polymer contrast agent for ultrasound/photoacoustic dual-modality imaging-guided synergistic high intensity focused ultrasound (HIFU) therapy[J]. Scientific Reports, 6, 31833(2016). http://europepmc.org/articles/PMC4989155/

    [58] Sun H, Ge W, Gao X et al. Apoptosis-promoting effects of hematoporphyrin monomethyl ether-sonodynamic therapy (HMME-SDT) on endometrial cancer[J]. PLOS One, 10, e0137980(2015). http://pubmedcentralcanada.ca/pmcc/articles/PMC4569302/

    [59] Wang X, Ip M, Leung A W et al. Sonodynamic inactivation of methicillin-resistant staphylococcus aureus in planktonic condition by curcumin under ultrasound sonication[J]. Ultrasonics, 54, 2109-2114(2014). http://www.sciencedirect.com/science/article/pii/S0041624X14001668

    [60] Wang X, Ip M, Leung A W et al. Sonodynamic action of hypocrellin B on methicillin-resistant staphylococcus aureus[J]. Ultrasonics, 65, 137-144(2016). http://www.ncbi.nlm.nih.gov/pubmed/26482395

    [61] Nakonechny F, Nisnevitch M, Nitzan Y et al. Sonodynamic excitation of rose bengal for eradication of gram-positive and gram-negative bacteria[J]. Biomed Research International, 2013, 684930(2012). http://www.ncbi.nlm.nih.gov/pubmed/23509759

    [62] Hatta A M. Nasution A M T, Drantantiyas N D G, et al. Comparison microbial killing efficacy between sonodynamic therapy and photodynamic therapy[C]. International Seminar on Photonics, Optics, and ITS Applications, 101501G(2016).

    [63] Xu F, Hu M, Liu C et al. Yolk-structured multifunctional up-conversion nanoparticles for synergistic photodynamic-sonodynamic antibacterial resistance therapy[J]. Biomaterials Science, 5, 678-685(2017). http://europepmc.org/abstract/MED/28280817

    [64] Jin Z, Wen Y, Hu Y et al. MRI-guided and ultrasound-triggered release of NO by advanced nanomedicine[J]. Nanoscale, 9, 3637-3645(2017). http://europepmc.org/abstract/MED/28247895

    [65] Sulemankhil I, Ganopolsky J G, Dieni C A et al. Prevention and treatment of virulent bacterial biofilms with an enzymatic nitric oxide-releasing dressing[J]. Antimicrobial Agents and Chemotherapy, 56, 6095-6103(2012). http://europepmc.org/articles/PMC3497171

    [66] Friedman A, Blecher K, Sanchez D et al. Susceptibility of gram-positive and -negative bacteria to novel nitric oxide-releasing nanoparticle technology[J]. Virulence, 2, 217-221(2014).

    [67] Fahey J M, Girotti A W. Nitric oxide-mediated resistance to photodynamic therapy in a human breast tumor xenograft model: Improved outcome with NOS2 inhibitors[J]. Nitric Oxide: Biology and Chemistry, 62, 52-61(2017). http://www.ncbi.nlm.nih.gov/pubmed/28007662

    Zhao Yiming, Liu Chengcheng, Wang Jing, Hu Min. Research Progress on Photodynamic Antimicrobial Chemotherapy Based on Rare Earth Upconversion Nanoplatform[J]. Chinese Journal of Lasers, 2018, 45(2): 207013
    Download Citation